Skip to content

Debugging Workflows

Transform debugging from hours of frustration into minutes of systematic problem-solving. Learn AI-powered debugging workflows that help you identify, isolate, and fix bugs faster than ever before.

Traditional debugging is often:

  • Time-consuming trial and error
  • Limited by human pattern recognition
  • Dependent on developer experience
  • Mentally exhausting

AI-powered debugging is:

  • Systematic and exhaustive - AI checks patterns you might miss
  • Learning from millions of bugs - Recognizes common issues instantly
  • Tireless - Maintains focus through complex debugging sessions
  • Collaborative - Like having an expert debugger pair programming

Impact: Reduce debugging time by 40-70% while finding root causes more reliably.

Strategic Logging

AI places optimal debug logs automatically

Root Cause Analysis

Systematic approach to finding bug origins

Pattern Recognition

AI identifies similar bugs and solutions

Fix Validation

Ensure fixes don’t introduce new bugs

  • Bug occurs inconsistently
  • Complex data flow issues
  • Performance problems
  • Integration failures
  1. Describe the Symptom

    Bug: User authentication fails intermittently
    Error: "Token validation failed"
    Frequency: ~30% of login attempts
    No clear pattern identified
  2. Let AI Add Strategic Logs

    // Prompt to Cursor
    @file auth/login.js
    @file auth/token.js
    Add debug logging to trace the authentication flow.
    Focus on:
    - Token generation and validation
    - Timing issues
    - State changes
    - External API calls
  3. AI Generates Targeted Logging

    // AI adds strategic console.logs
    async function validateToken(token) {
    console.log('[AUTH] Starting token validation', {
    tokenLength: token?.length,
    timestamp: Date.now(),
    tokenPrefix: token?.substring(0, 10)
    });
    try {
    console.log('[AUTH] Decoding token...');
    const decoded = jwt.verify(token, SECRET);
    console.log('[AUTH] Token decoded successfully', {
    userId: decoded.userId,
    exp: decoded.exp,
    timeUntilExpiry: decoded.exp - Date.now()
    });
    // More strategic logs...
    } catch (error) {
    console.error('[AUTH] Token validation failed', {
    error: error.message,
    token: token?.substring(0, 20),
    stack: error.stack
    });
    }
    }
  4. Run and Collect Logs

    Terminal window
    # Use YOLO mode to run automatically
    npm test -- --grep "authentication"
    # or
    npm run dev > debug.log 2>&1
  5. Analyze with AI

    @file debug.log
    Analyze these logs and identify:
    1. The root cause of intermittent failures
    2. Any patterns in the failures
    3. Suggested fixes
## Bug Investigation Template
### 1. Symptom Documentation
- **What happens**: [Exact behavior]
- **Expected behavior**: [What should happen]
- **Error messages**: [Copy exact errors]
- **Steps to reproduce**: [Minimal steps]
### 2. Context Gathering
@file [error location]
@code [specific function]
@recent-changes
@linter-errors
### 3. AI Analysis Request
Based on the above context:
1. What are the most likely causes?
2. What additional information would help?
3. Suggest diagnostic code to add
// Step 1: Ask AI to add memory profiling
/**
* @cursor Add memory leak detection:
* - Heap snapshots at intervals
* - Object allocation tracking
* - Event listener counting
* - Memory usage logging
*/
// AI generates:
const heapUsed = process.memoryUsage().heapUsed;
console.log(`Memory: ${Math.round(heapUsed / 1024 / 1024)}MB`);
// Track object counts
const objectCounts = {};
setInterval(() => {
const snapshot = {};
// AI adds sophisticated tracking
}, 5000);
Terminal window
# Step 1: Use AI to create git bisect script
@cursor Create a script that:
1. Uses git bisect to find when the bug was introduced
2. Runs our test automatically
3. Identifies the breaking commit
# AI generates:
#!/bin/bash
# bisect-bug.sh
echo "Starting automated git bisect..."
# Define the test command
test_command="npm test -- --grep 'user authentication'"
# Start bisect
git bisect start
git bisect bad HEAD
git bisect good v1.2.0 # Last known good version
# Run automated bisect
git bisect run bash -c "$test_command && echo 'good' || echo 'bad'"
# Get the result
breaking_commit=$(git bisect view --oneline -1)
echo "Bug introduced in: $breaking_commit"
# Reset
git bisect reset
@git commit [breaking_commit_hash]
@file [changed_files_in_commit]
Analyze this commit and explain:
1. What changed that could cause [bug description]
2. Why this change breaks [feature]
3. Suggest a fix that preserves the intent
// Ask AI to add Redux debugging
/**
* @cursor Add comprehensive Redux debugging:
* - Log all actions with payload
* - Track state changes
* - Identify which component triggered actions
* - Detect state mutations
*/
// AI creates middleware:
const debugMiddleware = store => next => action => {
console.group(`[REDUX] ${action.type}`);
console.log('Payload:', action.payload);
console.log('Previous State:', store.getState());
console.log('Triggered by:', new Error().stack.split('\n')[7]);
const result = next(action);
console.log('New State:', store.getState());
console.groupEnd();
return result;
};
// Step 1: Ask AI to add performance tracking
/**
* @cursor Add performance profiling to identify bottlenecks:
* - Function execution timing
* - Database query duration
* - API call latency
* - Rendering performance
* - Memory allocation
*/
// AI generates comprehensive profiling:
const performanceTracker = {
marks: new Map(),
start(label) {
this.marks.set(label, {
start: performance.now(),
memory: process.memoryUsage().heapUsed
});
},
end(label) {
const mark = this.marks.get(label);
if (!mark) return;
const duration = performance.now() - mark.start;
const memoryDelta = process.memoryUsage().heapUsed - mark.memory;
console.log(`[PERF] ${label}`, {
duration: `${duration.toFixed(2)}ms`,
memory: `${(memoryDelta / 1024).toFixed(2)}KB`,
slow: duration > 100
});
if (duration > 100) {
console.warn(`[PERF] Slow operation detected: ${label}`);
}
}
};
// Usage throughout code
performanceTracker.start('database-query');
const results = await db.query(sql);
performanceTracker.end('database-query');
# When dealing with data processing bugs
@cursor Help me implement binary search debugging:
1. The bug occurs when processing large datasets
2. Works fine with small data (< 100 items)
3. Fails with large data (> 10000 items)
Create a binary search approach to find the exact data size
where it starts failing.
// Compare working vs broken scenarios
/**
* @cursor Create a comparison debugger:
*
* Working scenario: User A can login
* Broken scenario: User B cannot login
*
* Add logging that captures and compares:
* - All function parameters
* - Return values
* - State at each step
* - Timing differences
*
* Output a diff showing where paths diverge
*/
// State history tracking
/**
* @cursor Create time-travel debugging for our app:
* - Store last 50 state changes
* - Allow replay of state transitions
* - Identify which transition caused the bug
* - Export state history for analysis
*/
const stateHistory = {
states: [],
maxHistory: 50,
record(state, action) {
this.states.push({
state: JSON.parse(JSON.stringify(state)),
action,
timestamp: Date.now(),
stack: new Error().stack
});
if (this.states.length > this.maxHistory) {
this.states.shift();
}
},
replay(fromIndex = 0) {
// Replay state transitions
},
export() {
// Export for analysis
}
};
#!/bin/bash
# auto-debug.sh - AI-powered debugging automation
echo "🔍 Starting AI-powered debugging session..."
# Step 1: Collect error information
echo "📝 Collecting error logs..."
npm test 2>&1 | tee test-output.log
# Step 2: Open logs in Cursor for AI analysis
echo "🤖 Opening in Cursor for analysis..."
cursor test-output.log
# Step 3: Use Cursor's AI to analyze and fix
# In Cursor, you can:
# - Use @test-output.log to reference the error log
# - Ask AI to analyze the errors and suggest fixes
# - Use AI to generate patches for the identified issues
# Step 4: Run verification
echo "✅ Verifying fixes..."
npm test
echo "📊 Debug session complete!"
MetricTraditionalAI-PoweredImprovement
Average bug fix time4.5 hours1.2 hours73% faster
Root cause accuracy60%95%58% better
Regression rate15%3%80% fewer
Developer frustrationHighLowPriceless
  • Can reproduce the bug consistently?
  • Have exact error messages/symptoms?
  • Checked recent changes?
  • Verified it’s not environmental?
  • Have minimal reproduction case?
  • Added strategic logging
  • Identified bug pattern/category
  • Found root cause (not just symptom)
  • Tested fix in isolation
  • Verified no regressions
  • Documented the fix
  • Added test to prevent regression
  • Updated documentation
  • Shared learning with team
  • Added to debugging playbook
  • Considered prevention strategies

Master debugging workflows to:

  • Reduce debugging time by 70%+
  • Find root causes more reliably
  • Prevent bug recurrence
  • Maintain developer sanity

Continue with:

Remember: The best debugger is the one that helps you understand not just what’s broken, but why it broke and how to prevent it from breaking again.