Incremental Migration
Safe, step-by-step code transformation
Transform legacy code into modern, maintainable architectures with AI-powered refactoring strategies. Learn to tackle large-scale refactoring projects that would traditionally take months in just days or weeks.
Traditional refactoring challenges:
AI-powered refactoring advantages:
Impact: Complete refactoring projects 5-10x faster with higher confidence and fewer bugs.
Incremental Migration
Safe, step-by-step code transformation
Pattern Detection
AI identifies refactoring opportunities
Automated Testing
Ensure functionality preservation
Architecture Evolution
Modernize entire system designs
Analysis Phase
@folder src/
Analyze this codebase and identify:1. Code smells and anti-patterns2. Duplicated logic that could be extracted3. Outdated patterns that need modernization4. Potential breaking changes5. Risk assessment for each refactoring
Test Coverage Assessment
// Ask AI to evaluate test coverage@folder tests/@file package.json
Evaluate our test coverage for the areas we want to refactor.Identify:- Which parts lack tests- Critical paths that need test coverage- Generate missing tests before refactoring
Incremental Refactoring Plan
Based on the analysis, create a refactoring plan that:1. Orders changes from lowest to highest risk2. Groups related changes together3. Identifies dependencies between refactorings4. Estimates time for each phase5. Includes verification steps
Execute with Verification
// For each refactoring step:1. Create feature branch2. Apply refactoring3. Run all tests4. Verify behavior unchanged5. Commit with descriptive message
// Original class componentclass UserProfile extends Component { state = { loading: true, user: null };
componentDidMount() { this.loadUser(); }
loadUser = async () => { const user = await api.getUser(this.props.id); this.setState({ user, loading: false }); }
render() { // Complex render logic }}
// AI Refactoring Prompt:@file components/UserProfile.js
Refactor this to a functional component with hooks:1. Convert class to function2. Replace state with useState3. Replace lifecycle with useEffect4. Preserve all functionality5. Add proper TypeScript types
// After function conversionconst UserProfile = ({ id }) => { const [loading, setLoading] = useState(true); const [user, setUser] = useState(null);
useEffect(() => { // Loading logic }, [id]);
// Render logic};
// AI Refactoring Prompt:Extract the data fetching logic into a custom hook called useUser.This pattern appears in 15 other components - prepare to reuse.
// After custom hook extractionconst UserProfile = ({ id }) => { const { user, loading } = useUser(id); // Render logic};
// AI Refactoring Prompt:Identify all components using user data and refactor to useReact Context or Zustand for centralized state management.Maintain the same API but eliminate prop drilling.
## Monolith Analysis Request
@folder src/@file package.json
Analyze this monolithic application and suggest how to break it into microservices:
1. Identify bounded contexts2. Find service boundaries3. Detect shared dependencies4. Suggest API contracts between services5. Create migration strategy
Focus on:- User management- Order processing- Inventory management- Reporting
services: - name: user-service responsibilities: - Authentication - User profiles - Permissions dependencies: - Shared: database, cache api_endpoints: - POST /auth/login - GET /users/:id - PUT /users/:id
- name: order-service responsibilities: - Order creation - Order processing - Payment integration dependencies: - user-service: for auth - inventory-service: for stock
migration_phases: phase1: - Extract user service - Implement API gateway - Add service discovery
phase2: - Extract order service - Implement event bus - Add distributed tracing
Schema Analysis
-- Ask AI to analyze schema@file schema.sql@folder migrations/
Analyze this database schema and identify:1. Normalization issues2. Missing indexes3. Inefficient data types4. Potential performance bottlenecks5. Security vulnerabilities
Generate Migration Strategy
// AI creates safe migration planconst migrationPlan = { phase1: { description: "Add missing indexes", migrations: [ "CREATE INDEX idx_user_email ON users(email);", "CREATE INDEX idx_order_user_date ON orders(user_id, created_at);" ], rollback: [ "DROP INDEX idx_user_email;", "DROP INDEX idx_order_user_date;" ], risk: "low", downtime: "zero" },
phase2: { description: "Normalize user addresses", migrations: [ // Create new tables // Migrate data // Update foreign keys ], risk: "medium", downtime: "minimal with proper strategy" }};
Implement with Zero Downtime
// AI generates zero-downtime migration codeasync function migrateWithoutDowntime() { // 1. Create new structure alongside old await createNewTables();
// 2. Set up triggers to sync data await createSyncTriggers();
// 3. Backfill historical data await backfillData();
// 4. Switch application to new schema await switchToNewSchema();
// 5. Clean up old structure await cleanupOldSchema();}
// Comprehensive framework upgrade/** * @cursor Upgrade our application from: * - React 16 → React 18 * - Webpack 4 → Webpack 5 * - Node 12 → Node 18 * * Steps: * 1. Identify all breaking changes * 2. Update package.json dependencies * 3. Fix all deprecation warnings * 4. Update configuration files * 5. Refactor incompatible code patterns * 6. Ensure all tests pass */
// AI generates detailed upgrade plan with:// - Dependency conflict resolution// - Code pattern updates// - Configuration migrations// - Performance optimizations
// Analyze and optimize React performance/** * @cursor Analyze React components for performance issues: * * 1. Identify unnecessary re-renders * 2. Find missing memoization opportunities * 3. Detect large bundle sizes * 4. Optimize image loading * 5. Implement code splitting * * For each issue found, provide: * - Current impact measurement * - Specific fix with code * - Expected improvement */
// AI identifies and fixes:// - Components missing React.memo// - Expensive computations without useMemo// - Large components that should be lazy loaded// - Unoptimized images and assets
// Optimize API performance/** * @cursor Analyze and optimize our API: * * 1. Identify N+1 query problems * 2. Find missing database indexes * 3. Detect inefficient algorithms * 4. Optimize data serialization * 5. Implement caching strategies * * Target: 50% reduction in response time */
// AI provides:// - Query optimization with joins// - Caching layer implementation// - Algorithm improvements// - Parallel processing opportunities
// Gradually replace legacy system/** * @cursor Implement strangler fig pattern for our legacy payment system: * * Current: Monolithic PaymentProcessor class (5000+ lines) * Target: Microservices architecture * * Create: * 1. New PaymentGateway interface * 2. Proxy that routes to old/new implementation * 3. Feature flags for gradual rollout * 4. Monitoring for both systems * 5. Gradual migration plan */
class PaymentProxy { async processPayment(payment) { if (featureFlag.useNewPaymentSystem(payment.userId)) { return await this.newPaymentService.process(payment); } return await this.legacyProcessor.process(payment); }}
// Refactor without feature branches/** * @cursor Implement branch by abstraction for database migration: * * Current: Direct MongoDB calls throughout codebase * Target: Abstract repository pattern * * Steps: * 1. Create abstraction layer * 2. Implement for current database * 3. Gradually move all calls to abstraction * 4. Implement new database behind same interface * 5. Switch with configuration change */
// AI creates abstraction layer allowing seamless migration
// Verify refactoring with parallel execution/** * @cursor Create parallel run verification: * * 1. Run old and new implementation in parallel * 2. Compare results * 3. Log any discrepancies * 4. Build confidence before switching * 5. Gradual rollout based on success rate */
async function parallelRun(input) { const [oldResult, newResult] = await Promise.all([ oldImplementation(input), newImplementation(input) ]);
if (!deepEqual(oldResult, newResult)) { logger.warn('Discrepancy detected', { input, oldResult, newResult, diff: generateDiff(oldResult, newResult) }); }
// Return old result while monitoring new return oldResult;}
#!/bin/bashecho "🔄 Starting AI-Powered Refactoring Assistant"
# Step 1: Analyze codebaseecho "📊 Analyzing codebase for refactoring opportunities..."cursor analyze \ --patterns "code-smells,outdated-patterns,performance" \ --output analysis.md
# Step 2: Generate refactoring planecho "📋 Creating refactoring plan..."cursor plan \ --input analysis.md \ --risk-assessment \ --time-estimates \ --output refactoring-plan.md
# Step 3: Create test coverage reportecho "🧪 Checking test coverage..."npm test -- --coveragecursor enhance-tests \ --coverage-report coverage/lcov.info \ --min-coverage 80
# Step 4: Execute refactoringecho "🚀 Executing refactoring plan..."cursor refactor \ --plan refactoring-plan.md \ --verify-tests \ --incremental \ --create-prs
echo "✅ Refactoring complete!"
Metric | Before | After | Improvement |
---|---|---|---|
Code complexity | 85 | 45 | 47% simpler |
Test coverage | 45% | 85% | 89% increase |
Build time | 12 min | 4 min | 67% faster |
Bundle size | 2.5 MB | 1.1 MB | 56% smaller |
Tech debt score | High | Low | 80% reduction |
Master refactoring strategies to:
Continue with:
Remember: The best refactoring is invisible to users but transformative for developers. Use AI to handle the mechanical parts so you can focus on architectural decisions.