Skip to content

AI-Powered Disaster Recovery

Disaster recovery isn’t just about backups—it’s about ensuring business continuity when the unexpected happens. AI transforms DR from reactive firefighting to proactive resilience planning, automating recovery procedures while learning from each incident.

🛡️ Prevention

Proactive monitoring and risk assessment to prevent disasters before they occur.

🔄 Recovery

Automated recovery procedures with intelligent decision-making for minimal downtime.

📊 Learning

Post-incident analysis to improve resilience and prevent future occurrences.

interface RecoveryObjectives {
// Recovery Time Objective - How long until service is restored
rto: {
critical: '15 minutes', // Payment processing, auth
high: '1 hour', // Core business features
medium: '4 hours', // Secondary features
low: '24 hours' // Nice-to-have features
};
// Recovery Point Objective - Maximum acceptable data loss
rpo: {
critical: '0 seconds', // No data loss (sync replication)
high: '5 minutes', // Near real-time backup
medium: '1 hour', // Hourly snapshots
low: '24 hours' // Daily backups
};
}
// AI helps classify and optimize
class DRPlanner {
async analyzeService(service: ServiceConfig) {
// AI analyzes service dependencies and usage
const classification = await this.aiClassify(service);
// Generate optimal backup strategy
return {
tier: classification.tier,
backupStrategy: this.getStrategy(classification),
dependencies: await this.traceDependencies(service),
testSchedule: this.generateTestSchedule(classification)
};
}
}
-- AI-generated backup strategy for PostgreSQL
-- Continuous archiving + Point-in-time recovery
-- 1. Enable WAL archiving
ALTER SYSTEM SET wal_level = 'replica';
ALTER SYSTEM SET archive_mode = 'on';
ALTER SYSTEM SET archive_command = 'aws s3 cp %p s3://backup-bucket/wal/%f';
-- 2. Automated backup script
CREATE OR REPLACE FUNCTION automated_backup()
RETURNS void AS $$
DECLARE
backup_id text;
start_time timestamp;
BEGIN
backup_id := 'backup_' || to_char(now(), 'YYYYMMDD_HH24MISS');
start_time := clock_timestamp();
-- Notify monitoring
PERFORM pg_notify('backup_status',
json_build_object(
'status', 'started',
'backup_id', backup_id,
'type', 'full'
)::text
);
-- Perform backup
PERFORM pg_backup_start(backup_id);
-- AI monitors for anomalies during backup
IF (SELECT count(*) FROM pg_stat_activity
WHERE state = 'active' AND query_start < now() - interval '1 hour') > 0
THEN
PERFORM pg_notify('backup_alert', 'Long-running queries detected');
END IF;
-- Complete backup
PERFORM pg_backup_stop();
-- Log metrics
INSERT INTO backup_history (id, duration, size, status)
VALUES (
backup_id,
clock_timestamp() - start_time,
pg_database_size(current_database()),
'completed'
);
END;
$$ LANGUAGE plpgsql;
-- 3. Schedule automated backups
SELECT cron.schedule('full-backup', '0 2 * * *', 'SELECT automated_backup()');
SELECT cron.schedule('incremental', '*/15 * * * *', 'SELECT incremental_backup()');
  1. Detection - AI monitors for anomalies and failures
  2. Assessment - Automatic impact analysis and classification
  3. Decision - AI determines optimal recovery strategy
  4. Execution - Automated recovery with human oversight
  5. Verification - Ensure services are fully restored
  6. Learning - Post-incident analysis for improvement
// AI-powered disaster recovery orchestrator
class DisasterRecoveryOrchestrator {
private readonly strategies: Map<IncidentType, RecoveryStrategy> = new Map([
['database_failure', new DatabaseRecoveryStrategy()],
['service_outage', new ServiceRecoveryStrategy()],
['data_corruption', new DataRecoveryStrategy()],
['security_breach', new SecurityRecoveryStrategy()],
['regional_failure', new RegionalFailoverStrategy()]
]);
async handleIncident(alert: IncidentAlert) {
const incident = await this.classifyIncident(alert);
// Create recovery plan
const plan = await this.createRecoveryPlan(incident);
// Get human approval for critical decisions
if (incident.severity === 'critical') {
await this.requestApproval(plan);
}
// Execute recovery
const recovery = await this.executeRecovery(plan);
// Monitor and adjust
await this.monitorRecovery(recovery);
// Generate post-mortem
await this.generatePostMortem(incident, recovery);
}
private async createRecoveryPlan(incident: Incident): Promise<RecoveryPlan> {
// AI analyzes the incident
const analysis = await this.aiAnalyze({
incident,
systemState: await this.getSystemState(),
availableBackups: await this.getBackupInventory(),
dependencies: await this.getDependencyGraph()
});
return {
steps: [
// 1. Isolate affected systems
{
action: 'isolate',
targets: analysis.affectedSystems,
priority: 1,
automated: true
},
// 2. Activate DR environment
{
action: 'activate_dr',
environment: analysis.optimalDRSite,
priority: 2,
requiresApproval: incident.severity === 'critical'
},
// 3. Restore data
{
action: 'restore',
source: analysis.bestBackupSource,
targetTime: analysis.optimalRecoveryPoint,
priority: 3,
parallel: true
},
// 4. Verify integrity
{
action: 'verify',
checks: analysis.integrityChecks,
priority: 4,
automated: true
},
// 5. Switch traffic
{
action: 'failover',
method: analysis.failoverStrategy,
priority: 5,
canary: true // Gradual failover
}
],
estimatedDuration: analysis.estimatedRTO,
rollbackPlan: this.generateRollbackPlan(analysis),
communicationPlan: this.generateCommsPlan(incident)
};
}
}
-- AI-assisted PostgreSQL PITR recovery
CREATE OR REPLACE FUNCTION intelligent_pitr_recovery(
target_time timestamp,
recovery_reason text
) RETURNS TABLE (
recovery_point timestamp,
data_loss_estimate text,
affected_transactions bigint,
recovery_script text
) AS $$
DECLARE
closest_backup timestamp;
wal_available boolean;
BEGIN
-- Find optimal recovery point
SELECT MAX(backup_time) INTO closest_backup
FROM backup_history
WHERE backup_time <= target_time
AND status = 'completed';
-- Check WAL availability
wal_available := verify_wal_chain(closest_backup, target_time);
-- AI suggests recovery approach
IF NOT wal_available THEN
-- Find alternative recovery point
SELECT MAX(backup_time) INTO closest_backup
FROM backup_history
WHERE backup_time <= target_time
AND status = 'completed'
AND verify_wal_chain(backup_time, target_time);
END IF;
RETURN QUERY
SELECT
closest_backup as recovery_point,
age(target_time, closest_backup)::text as data_loss_estimate,
COUNT(DISTINCT xid) as affected_transactions,
generate_recovery_script(
closest_backup,
target_time,
recovery_reason
) as recovery_script
FROM pg_xact_commit_timestamp
WHERE timestamp BETWEEN closest_backup AND target_time;
END;
$$ LANGUAGE plpgsql;
-- Recovery execution with monitoring
CREATE OR REPLACE FUNCTION execute_recovery(
recovery_script text
) RETURNS void AS $$
BEGIN
-- Notify monitoring systems
PERFORM pg_notify('dr_event', json_build_object(
'event', 'recovery_started',
'timestamp', now(),
'script', recovery_script
)::text);
-- Execute recovery
EXECUTE recovery_script;
-- Verify recovery
IF NOT verify_database_integrity() THEN
RAISE EXCEPTION 'Recovery verification failed';
END IF;
-- Update DR status
UPDATE dr_status
SET last_recovery = now(),
recovery_successful = true
WHERE active = true;
END;
$$ LANGUAGE plpgsql;
// Intelligent cross-region failover
class CrossRegionFailover {
private regions = [
{ id: 'us-east-1', priority: 1, health: 'healthy' },
{ id: 'us-west-2', priority: 2, health: 'healthy' },
{ id: 'eu-west-1', priority: 3, health: 'healthy' }
];
async executeFailover(failedRegion: string) {
// Update region health
this.updateRegionHealth(failedRegion, 'failed');
// Select target region
const targetRegion = await this.selectTargetRegion({
exclude: [failedRegion],
criteria: {
latency: await this.measureLatencies(),
capacity: await this.checkCapacities(),
dataFreshness: await this.checkReplicationLag()
}
});
// Pre-flight checks
const checks = await this.runPreFlightChecks(targetRegion);
if (!checks.passed) {
throw new Error(`Pre-flight checks failed: ${checks.failures}`);
}
// Execute failover
await this.performFailover({
from: failedRegion,
to: targetRegion,
steps: [
// Stop writes to failed region
{ action: 'disable_writes', region: failedRegion },
// Ensure replication is caught up
{ action: 'wait_replication', maxLag: '5s' },
// Promote standby
{ action: 'promote_standby', region: targetRegion },
// Update DNS
{ action: 'update_dns', target: targetRegion },
// Verify health
{ action: 'health_check', timeout: '30s' }
]
});
// Monitor new primary
await this.monitorFailover(targetRegion);
}
}
  1. Schedule regular tests - Weekly for critical systems, monthly for others
  2. Create realistic scenarios - AI generates failure scenarios based on historical incidents
  3. Execute in isolation - Test in DR environment without affecting production
  4. Measure recovery metrics - Track RTO/RPO achievement
  5. Document gaps - AI identifies areas for improvement
  6. Update procedures - Incorporate lessons learned
# AI-generated chaos experiments for DR testing
apiVersion: chaos-mesh.org/v1alpha1
kind: Schedule
metadata:
name: dr-readiness-test
spec:
schedule: "0 3 * * 6" # Weekly on Saturday 3 AM
type: "Workflow"
historyLimit: 5
workflow:
entry: "dr-test-sequence"
templates:
- name: "dr-test-sequence"
templateType: Serial
deadline: 4h
children:
# Test 1: Database failure
- name: "database-failure"
templateType: PodChaos
deadline: 30m
podChaos:
action: pod-kill
mode: one
selector:
labelSelectors:
app: "postgresql-primary"
# Test 2: Network partition
- name: "network-partition"
templateType: NetworkChaos
deadline: 30m
networkChaos:
action: partition
mode: all
selector:
labelSelectors:
region: "us-east-1"
direction: both
# Test 3: Regional outage
- name: "regional-outage"
templateType: MultiChaos
deadline: 1h
children:
- podChaos:
action: pod-kill
mode: all
selector:
labelSelectors:
region: "us-east-1"
- networkChaos:
action: loss
mode: all
selector:
labelSelectors:
region: "us-east-1"
loss: "100"
// AI-powered recovery validation
class RecoveryValidator {
async validateRecovery(recovery: RecoveryExecution) {
const validations = {
dataIntegrity: await this.checkDataIntegrity(),
serviceHealth: await this.checkServiceHealth(),
performanceBaseline: await this.checkPerformance(),
securityPosture: await this.checkSecurity()
};
// AI analyzes validation results
const analysis = await this.aiAnalyze({
validations,
expectedState: recovery.targetState,
actualState: await this.captureSystemState()
});
if (analysis.anomalies.length > 0) {
// AI suggests remediation
const remediation = await this.generateRemediation(
analysis.anomalies
);
await this.notifyOps({
status: 'partial_recovery',
anomalies: analysis.anomalies,
suggestedActions: remediation
});
}
return {
status: analysis.overallStatus,
report: this.generateReport(validations, analysis),
metrics: {
actualRTO: recovery.duration,
dataLoss: analysis.dataLossAssessment,
serviceAvailability: analysis.availability
}
};
}
}
// Response to catastrophic data center loss
async function handleDataCenterFailure(incident: DataCenterIncident) {
const dr = new DisasterRecoveryOrchestrator();
// Phase 1: Immediate response (0-15 minutes)
await dr.execute({
phase: 'immediate',
actions: [
// Activate incident command
{
type: 'notify',
targets: ['oncall', 'leadership', 'stakeholders'],
severity: 'critical'
},
// Fail over critical services
{
type: 'failover',
services: ['auth', 'payments', 'core-api'],
target: 'dr-site-1',
method: 'dns-failover'
},
// Enable read-only mode
{
type: 'degrade-gracefully',
mode: 'read-only',
services: ['*']
}
]
});
// Phase 2: Service restoration (15-60 minutes)
await dr.execute({
phase: 'restoration',
actions: [
// Restore from backups
{
type: 'restore-data',
source: 'cross-region-backups',
target: 'dr-site-1',
priority: ['user-data', 'transactions', 'analytics']
},
// Scale DR infrastructure
{
type: 'auto-scale',
target: '200%', // Handle full production load
services: ['web', 'api', 'workers']
},
// Verify data consistency
{
type: 'consistency-check',
method: 'ai-assisted',
acceptableRPO: '5 minutes'
}
]
});
// Phase 3: Full recovery (1-4 hours)
await dr.execute({
phase: 'full-recovery',
actions: [
// Restore full functionality
{
type: 'enable-writes',
services: ['*'],
validation: 'required'
},
// Performance optimization
{
type: 'optimize',
targets: ['cache-warming', 'connection-pools', 'cdn']
},
// Customer communication
{
type: 'communicate',
channels: ['status-page', 'email', 'social'],
message: await dr.generateCustomerUpdate(incident)
}
]
});
}
# AI-generated ransomware recovery playbook
#!/bin/bash
# 1. Isolate affected systems
claude --no-interactive "Generate network isolation rules for compromised segments"
# 2. Assess damage
claude "Analyze backup integrity and find last clean backup before encryption"
# 3. Recovery plan
claude "Create recovery plan prioritizing:
- Critical business services
- Customer data
- Financial systems
- Internal tools
Include time estimates and dependency order"
# 4. Execute recovery
claude "Execute recovery with:
- Parallel restoration where possible
- Integrity verification at each step
- Progress monitoring and reporting"
# 5. Strengthen defenses
claude "Analyze attack vector and suggest security improvements"
// AI-powered post-mortem generation
class PostMortemAnalyzer {
async generatePostMortem(incident: Incident, recovery: Recovery) {
const analysis = await this.comprehensiveAnalysis({
incident,
recovery,
logs: await this.collectLogs(incident.timeframe),
metrics: await this.collectMetrics(incident.timeframe),
decisions: await this.extractDecisions(recovery)
});
return {
executive_summary: analysis.summary,
timeline: analysis.timeline,
root_cause: analysis.rootCause,
impact: {
customers_affected: analysis.customerImpact,
data_loss: analysis.dataLoss,
revenue_impact: analysis.revenueImpact,
reputation_impact: analysis.reputationScore
},
what_went_well: analysis.positives,
what_went_wrong: analysis.negatives,
action_items: analysis.improvements.map(imp => ({
description: imp.description,
owner: imp.suggestedOwner,
priority: imp.priority,
due_date: imp.estimatedCompletion
})),
prevention: {
technical: analysis.technicalPrevention,
process: analysis.processPrevention,
training: analysis.trainingNeeds
}
};
}
}

🎯 Test Regularly

Weekly tests for critical systems, monthly for all others. Automate testing to ensure consistency.

📊 Monitor Everything

Track backup success, replication lag, and recovery readiness continuously.

🤖 Automate Wisely

Automate detection and initial response, but maintain human oversight for critical decisions.

📚 Document Everything

AI can help maintain up-to-date runbooks that evolve with your infrastructure.

## Daily Checks (Automated)
- [ ] Backup completion status
- [ ] Replication lag < 5 seconds
- [ ] DR site health checks passing
- [ ] Critical service redundancy active
## Weekly Tasks
- [ ] Test failover for one service
- [ ] Review backup integrity reports
- [ ] Update recovery documentation
- [ ] Verify contact lists current
## Monthly Reviews
- [ ] Full DR drill execution
- [ ] RTO/RPO measurement
- [ ] Cost optimization review
- [ ] Training and knowledge transfer
## Quarterly Planning
- [ ] Update risk assessments
- [ ] Review and update DR strategy
- [ ] Vendor and tool evaluation
- [ ] Budget and resource planning