Skip to content

Building Data Pipelines with AI

Data pipelines form the backbone of modern data-driven applications. This lesson demonstrates how Cursor IDE’s AI capabilities transform complex ETL processes, stream processing, and data engineering tasks into manageable, efficient workflows.

Traditional data pipeline development involves juggling multiple technologies, handling complex transformations, and ensuring data quality. AI assistance makes these tasks more approachable by generating boilerplate code, suggesting optimizations, and helping debug data flow issues.

Complex Transformations

AI helps write and optimize data transformation logic across formats

Error Handling

AI generates robust error handling and recovery mechanisms

Performance Tuning

AI suggests optimizations for large-scale data processing

Schema Evolution

AI assists with schema versioning and migration strategies

  1. Define Pipeline Requirements

    # Ask AI to design pipeline architecture
    "Design an ETL pipeline that:
    - Ingests data from PostgreSQL, REST APIs, and CSV files
    - Transforms and validates data
    - Loads into a data warehouse (Snowflake)
    - Handles incremental updates
    - Includes error recovery and monitoring"
  2. Generate Pipeline Scaffold

    # AI creates pipeline structure
    from dataclasses import dataclass
    from typing import Any, Dict, List
    import asyncio
    from abc import ABC, abstractmethod
    @dataclass
    class PipelineConfig:
    source_configs: Dict[str, Dict[str, Any]]
    transformation_rules: List[Dict[str, Any]]
    destination_config: Dict[str, Any]
    error_handling: Dict[str, Any]
    class DataPipeline(ABC):
    def __init__(self, config: PipelineConfig):
    self.config = config
    self.setup_monitoring()
    @abstractmethod
    async def extract(self) -> Any:
    pass
    @abstractmethod
    async def transform(self, data: Any) -> Any:
    pass
    @abstractmethod
    async def load(self, data: Any) -> None:
    pass
  3. Implement Data Sources

    # AI implements various data source connectors
    "Create connectors for:
    - PostgreSQL with connection pooling
    - REST API with rate limiting
    - CSV with schema inference
    - Include retry logic and error handling"
# AI creates database extractor
"Implement PostgreSQL extractor with:
- Connection pooling
- Incremental extraction using timestamps
- Parallel table extraction
- Memory-efficient streaming"
import asyncpg
from contextlib import asynccontextmanager
class PostgreSQLExtractor:
def __init__(self, connection_string: str, batch_size: int = 10000):
self.connection_string = connection_string
self.batch_size = batch_size
self.pool = None
async def initialize(self):
self.pool = await asyncpg.create_pool(
self.connection_string,
min_size=5,
max_size=20,
command_timeout=60
)
async def extract_incremental(self, table: str, timestamp_column: str,
last_extracted: datetime) -> AsyncGenerator:
async with self.pool.acquire() as conn:
query = f"""
SELECT * FROM {table}
WHERE {timestamp_column} > $1
ORDER BY {timestamp_column}
"""
async with conn.transaction():
async for row in conn.cursor(query, last_extracted):
yield dict(row)
# AI implements transformation framework
"Create a transformation framework that supports:
- Column mapping and renaming
- Data type conversions
- Calculated fields
- Data validation rules
- Error record handling"
class TransformationEngine:
def __init__(self, rules: List[TransformationRule]):
self.rules = rules
self.error_handler = ErrorHandler()
async def transform_batch(self, data: pd.DataFrame) -> TransformResult:
transformed = data.copy()
errors = []
for rule in self.rules:
try:
transformed = await rule.apply(transformed)
except TransformationError as e:
errors.extend(self.error_handler.handle(e, data))
return TransformResult(
success_data=transformed,
error_records=errors,
stats=self._calculate_stats(data, transformed)
)
# AI generates specific transformations
class DateTimeTransformation(TransformationRule):
def __init__(self, columns: List[str], target_format: str):
self.columns = columns
self.target_format = target_format
async def apply(self, df: pd.DataFrame) -> pd.DataFrame:
for col in self.columns:
if col in df.columns:
df[col] = pd.to_datetime(df[col]).dt.strftime(self.target_format)
return df
# AI implements Kafka stream processor
"Create Kafka stream processor with:
- Consumer groups for scaling
- Exactly-once semantics
- Windowed aggregations
- State management"
from aiokafka import AIOKafkaConsumer, AIOKafkaProducer
from aiokafka.helpers import create_ssl_context
import json
class KafkaStreamProcessor:
def __init__(self, config: KafkaConfig):
self.config = config
self.consumer = None
self.producer = None
self.state_store = StateStore()
async def start(self):
self.consumer = AIOKafkaConsumer(
*self.config.topics,
bootstrap_servers=self.config.brokers,
group_id=self.config.consumer_group,
enable_auto_commit=False,
value_deserializer=lambda m: json.loads(m.decode('utf-8'))
)
self.producer = AIOKafkaProducer(
bootstrap_servers=self.config.brokers,
value_serializer=lambda v: json.dumps(v).encode('utf-8')
)
await self.consumer.start()
await self.producer.start()
async def process_messages(self):
async for msg in self.consumer:
try:
# Process message
result = await self.transform_message(msg.value)
# Send to output topic
await self.producer.send(
self.config.output_topic,
value=result,
key=msg.key
)
# Commit offset only after successful processing
await self.consumer.commit()
except Exception as e:
await self.handle_error(msg, e)
# AI creates comprehensive data quality framework
"Design data quality framework with:
- Schema validation
- Business rule validation
- Anomaly detection
- Data profiling
- Quality metrics and reporting"
class DataQualityEngine:
def __init__(self):
self.validators = []
self.profiler = DataProfiler()
self.anomaly_detector = AnomalyDetector()
def add_validator(self, validator: DataValidator):
self.validators.append(validator)
async def validate_batch(self, data: pd.DataFrame) -> QualityReport:
report = QualityReport()
# Run all validators
for validator in self.validators:
result = await validator.validate(data)
report.add_result(result)
# Profile data
profile = await self.profiler.profile(data)
report.add_profile(profile)
# Detect anomalies
anomalies = await self.anomaly_detector.detect(data)
report.add_anomalies(anomalies)
return report
# AI implements specific validators
class SchemaValidator(DataValidator):
def __init__(self, expected_schema: Dict[str, type]):
self.expected_schema = expected_schema
async def validate(self, data: pd.DataFrame) -> ValidationResult:
errors = []
# Check columns
missing_cols = set(self.expected_schema.keys()) - set(data.columns)
if missing_cols:
errors.append(f"Missing columns: {missing_cols}")
# Check data types
for col, expected_type in self.expected_schema.items():
if col in data.columns:
actual_type = data[col].dtype
if not self._compatible_types(actual_type, expected_type):
errors.append(f"Column {col}: expected {expected_type}, got {actual_type}")
return ValidationResult(
passed=len(errors) == 0,
errors=errors,
stats=self._calculate_stats(data)
)

Lineage Tracking

Track data flow from source to destination with full audit trail

Performance Metrics

Monitor pipeline throughput, latency, and resource usage

Error Tracking

Capture and analyze pipeline errors with root cause analysis

Data Freshness

Monitor data timeliness and alert on stale data

# AI implements CDC pipeline
"Create CDC pipeline that:
- Captures database changes in real-time
- Handles schema evolution
- Maintains ordering guarantees
- Supports multiple CDC sources"
class CDCPipeline:
def __init__(self, source_config: CDCSourceConfig):
self.source_config = source_config
self.schema_registry = SchemaRegistry()
self.state_store = CDCStateStore()
async def start_cdc(self):
# Initialize CDC connection
cdc_stream = await self.connect_to_source()
async for change_event in cdc_stream:
try:
# Handle schema changes
if change_event.is_ddl:
await self.handle_schema_change(change_event)
# Process data changes
else:
transformed = await self.transform_change_event(change_event)
await self.emit_change(transformed)
# Update checkpoint
await self.state_store.update_position(change_event.position)
except Exception as e:
await self.handle_cdc_error(change_event, e)
# AI creates batch processing layer
"Implement batch layer for data lake:
- Partitioned storage (year/month/day)
- Format optimization (Parquet/ORC)
- Compression strategies
- Metadata management"
class BatchLayer:
def __init__(self, storage_config: StorageConfig):
self.storage = self._create_storage_client(storage_config)
self.metadata_store = MetadataStore()
async def process_batch(self, data: pd.DataFrame,
partition_keys: List[str]) -> BatchResult:
# Optimize data format
optimized = self.optimize_for_storage(data)
# Calculate partitions
partitions = self.calculate_partitions(optimized, partition_keys)
# Write partitioned data
write_results = []
for partition, partition_data in partitions.items():
path = self.generate_path(partition)
result = await self.write_optimized(
partition_data,
path,
compression='snappy'
)
write_results.append(result)
# Update metadata
await self.metadata_store.register_batch(write_results)
return BatchResult(write_results)
# AI creates Airflow DAG
"Generate Airflow DAG for:
- Daily ETL pipeline
- Dependencies between tasks
- Error handling and retries
- SLA monitoring
- Dynamic task generation"
from airflow import DAG
from airflow.operators.python import PythonOperator
from airflow.providers.databricks.operators.databricks import DatabricksSubmitRunOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'data-team',
'depends_on_past': False,
'start_date': datetime(2024, 1, 1),
'email_on_failure': True,
'email_on_retry': False,
'retries': 2,
'retry_delay': timedelta(minutes=5)
}
dag = DAG(
'data_pipeline',
default_args=default_args,
description='Daily ETL pipeline',
schedule_interval='@daily',
catchup=False,
tags=['etl', 'production']
)
# AI generates task definitions
def extract_data(**context):
# Extract logic here
pass
def validate_data(**context):
# Validation logic here
pass
def transform_data(**context):
# Transformation logic here
pass
# Define tasks
extract_task = PythonOperator(
task_id='extract_data',
python_callable=extract_data,
dag=dag
)
validate_task = PythonOperator(
task_id='validate_data',
python_callable=validate_data,
dag=dag
)
transform_task = DatabricksSubmitRunOperator(
task_id='transform_data',
databricks_conn_id='databricks_default',
notebook_task={
'notebook_path': '/Repos/etl/transform',
'base_parameters': {
'date': '{{ ds }}'
}
},
dag=dag
)
# Set dependencies
extract_task >> validate_task >> transform_task
  1. Design pipeline architecture with AI assistance
  2. Implement extractors for multiple sources
  3. Create transformation logic with validation
  4. Load data into warehouse
  5. Add monitoring and alerting
  1. Set up Kafka or similar streaming platform
  2. Create stream processor with windowing
  3. Implement exactly-once processing
  4. Add state management
  5. Monitor throughput and latency
  1. Design quality rules for your data
  2. Implement validators with AI help
  3. Create anomaly detection system
  4. Build quality dashboard
  5. Set up alerting for violations

Idempotency

Ensure pipelines can be safely re-run without duplicating data

Incremental Processing

Process only new or changed data to improve efficiency

Error Recovery

Implement comprehensive error handling and recovery mechanisms

Monitoring First

Build monitoring and observability from the start

DevOps for Data

Learn infrastructure automation for data pipelines

Monitoring Pipelines

Implement comprehensive pipeline monitoring

Architecture Patterns

Explore advanced data architecture patterns