Skip to content

System Architecture Design with AI

System architecture forms the foundation of successful software projects. This lesson demonstrates how Cursor IDE’s AI capabilities transform architectural design from an abstract, experience-dependent process into a systematic, guided approach that incorporates best practices and patterns.

Traditional architecture design requires years of experience and deep knowledge of patterns, trade-offs, and emerging technologies. AI assistance democratizes this expertise, helping developers make informed architectural decisions and avoid common pitfalls.

Pattern Selection

AI recommends appropriate architectural patterns for your use case

Scalability Design

AI helps design systems that scale horizontally and vertically

Technology Selection

AI suggests optimal technology stacks based on requirements

Trade-off Analysis

AI explains pros, cons, and implications of architectural decisions

  1. Domain Analysis

    // Ask AI to analyze domain and suggest boundaries
    "Analyze this e-commerce system and suggest microservice boundaries:
    - User management and authentication
    - Product catalog and inventory
    - Shopping cart and checkout
    - Order processing and fulfillment
    - Payment processing
    - Notification system
    - Analytics and reporting
    Consider: data ownership, scaling needs, team boundaries, and deployment independence"
  2. Service Design

    // AI designs service architecture
    "Design microservices architecture with:
    - Service communication patterns (sync/async)
    - Data consistency strategies
    - Service discovery mechanism
    - API gateway design
    - Distributed tracing
    - Circuit breaker patterns"
    // AI generates architecture
    export interface ServiceArchitecture {
    services: {
    name: string;
    responsibilities: string[];
    api: APIDefinition;
    database: DatabaseConfig;
    dependencies: string[];
    scalingStrategy: ScalingConfig;
    }[];
    communication: {
    synchronous: RestAPIConfig;
    asynchronous: MessageQueueConfig;
    graphql?: GraphQLGatewayConfig;
    };
    infrastructure: {
    serviceDiscovery: 'consul' | 'eureka' | 'kubernetes';
    loadBalancing: LoadBalancerConfig;
    monitoring: MonitoringStack;
    };
    }
  3. Implementation Blueprint

    # AI creates implementation plan
    "Generate Kubernetes manifests for microservices:
    - Service definitions with proper labels
    - Deployment configurations with resource limits
    - ConfigMaps for environment-specific settings
    - Secrets management
    - Network policies for service communication
    - Ingress configuration"
    # AI generates service manifest
    apiVersion: v1
    kind: Service
    metadata:
    name: user-service
    labels:
    app: user-service
    tier: backend
    spec:
    selector:
    app: user-service
    ports:
    - port: 80
    targetPort: 8080
    protocol: TCP
    type: ClusterIP
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
    name: user-service
    spec:
    replicas: 3
    selector:
    matchLabels:
    app: user-service
    template:
    metadata:
    labels:
    app: user-service
    version: v1
    spec:
    containers:
    - name: user-service
    image: user-service:1.0.0
    ports:
    - containerPort: 8080
    env:
    - name: DATABASE_URL
    valueFrom:
    secretKeyRef:
    name: user-db-secret
    key: connection-string
    - name: KAFKA_BROKERS
    value: "kafka-0.kafka:9092,kafka-1.kafka:9092"
    resources:
    requests:
    memory: "256Mi"
    cpu: "250m"
    limits:
    memory: "512Mi"
    cpu: "500m"
    livenessProbe:
    httpGet:
    path: /health
    port: 8080
    initialDelaySeconds: 30
    periodSeconds: 10
    readinessProbe:
    httpGet:
    path: /ready
    port: 8080
    initialDelaySeconds: 5
    periodSeconds: 5
// AI implements event sourcing
"Design event sourcing system for order management:
- Event store design
- Event versioning strategy
- Projection handling
- Snapshot optimization
- CQRS implementation"
// AI generates event sourcing framework
interface Event {
id: string;
aggregateId: string;
type: string;
version: number;
timestamp: Date;
data: any;
metadata: EventMetadata;
}
abstract class AggregateRoot {
private uncommittedEvents: Event[] = [];
protected version: number = 0;
constructor(public readonly id: string) {}
protected applyEvent(event: Event): void {
this.handleEvent(event);
this.version = event.version;
}
protected raiseEvent(eventData: any): void {
const event: Event = {
id: generateId(),
aggregateId: this.id,
type: eventData.constructor.name,
version: this.version + 1,
timestamp: new Date(),
data: eventData,
metadata: this.getEventMetadata()
};
this.applyEvent(event);
this.uncommittedEvents.push(event);
}
getUncommittedEvents(): Event[] {
return this.uncommittedEvents;
}
markEventsAsCommitted(): void {
this.uncommittedEvents = [];
}
abstract handleEvent(event: Event): void;
private getEventMetadata(): EventMetadata {
return {
userId: getCurrentUser(),
correlationId: getCorrelationId(),
causationId: getCausationId()
};
}
}
// Order aggregate implementation
class Order extends AggregateRoot {
private items: OrderItem[] = [];
private status: OrderStatus = 'pending';
private customerId: string;
static create(customerId: string): Order {
const order = new Order(generateId());
order.raiseEvent(new OrderCreated(customerId));
return order;
}
addItem(productId: string, quantity: number, price: number): void {
if (this.status !== 'pending') {
throw new Error('Cannot add items to non-pending order');
}
this.raiseEvent(new ItemAdded(productId, quantity, price));
}
submit(): void {
if (this.items.length === 0) {
throw new Error('Cannot submit empty order');
}
this.raiseEvent(new OrderSubmitted());
}
handleEvent(event: Event): void {
switch (event.type) {
case 'OrderCreated':
this.customerId = event.data.customerId;
break;
case 'ItemAdded':
this.items.push({
productId: event.data.productId,
quantity: event.data.quantity,
price: event.data.price
});
break;
case 'OrderSubmitted':
this.status = 'submitted';
break;
}
}
}
// Event store implementation
class EventStore {
async saveEvents(events: Event[]): Promise<void> {
const transaction = await this.db.transaction();
try {
for (const event of events) {
await transaction.insert('events', {
event_id: event.id,
aggregate_id: event.aggregateId,
event_type: event.type,
event_version: event.version,
event_data: JSON.stringify(event.data),
event_metadata: JSON.stringify(event.metadata),
created_at: event.timestamp
});
}
await transaction.commit();
// Publish events to message bus
await this.publishEvents(events);
} catch (error) {
await transaction.rollback();
throw error;
}
}
async getEvents(
aggregateId: string,
fromVersion?: number
): Promise<Event[]> {
const query = this.db
.select('*')
.from('events')
.where('aggregate_id', aggregateId)
.orderBy('event_version');
if (fromVersion) {
query.where('event_version', '>', fromVersion);
}
const rows = await query;
return rows.map(row => ({
id: row.event_id,
aggregateId: row.aggregate_id,
type: row.event_type,
version: row.event_version,
timestamp: row.created_at,
data: JSON.parse(row.event_data),
metadata: JSON.parse(row.event_metadata)
}));
}
}

Load Balancing

Distribute traffic across instances effectively

Session Management

Handle sessions in distributed environment

Data Partitioning

Shard data for horizontal scaling

Cache Strategy

Implement distributed caching

// AI designs scalable architecture
"Design horizontally scalable architecture for social media platform:
- Handle millions of concurrent users
- Real-time messaging and notifications
- Media storage and delivery
- Global distribution
- Cost optimization"
// AI generates scalability design
interface ScalableArchitecture {
// Load balancing tier
loadBalancing: {
global: {
type: 'GeoDNS';
regions: string[];
failoverStrategy: 'active-passive';
};
regional: {
type: 'ALB' | 'NLB';
algorithm: 'least-connections';
healthChecks: HealthCheckConfig;
};
};
// Application tier
application: {
autoScaling: {
minInstances: number;
maxInstances: number;
targetCPU: number;
scaleUpThreshold: number;
scaleDownThreshold: number;
};
deployment: {
strategy: 'blue-green' | 'rolling' | 'canary';
rollbackTriggers: string[];
};
};
// Data tier
data: {
primary: {
type: 'Aurora PostgreSQL';
replication: 'multi-master';
readReplicas: number;
sharding: ShardingStrategy;
};
cache: {
type: 'Redis Cluster';
evictionPolicy: 'LRU';
replication: boolean;
};
search: {
type: 'Elasticsearch';
shards: number;
replicas: number;
};
};
// Message queue tier
messaging: {
type: 'Kafka';
partitions: number;
replicationFactor: number;
retentionHours: number;
};
}
// Sharding implementation
class ShardManager {
private shards: Map<string, DatabaseShard> = new Map();
constructor(private config: ShardingConfig) {
this.initializeShards();
}
private initializeShards(): void {
for (let i = 0; i < this.config.shardCount; i++) {
const shard = new DatabaseShard({
id: i,
connectionString: this.config.getConnectionString(i),
keyRange: this.calculateKeyRange(i)
});
this.shards.set(shard.id, shard);
}
}
getShardForKey(key: string): DatabaseShard {
const hash = this.hashKey(key);
const shardId = hash % this.config.shardCount;
return this.shards.get(shardId.toString());
}
async reshardData(newShardCount: number): Promise<void> {
// AI implements resharding logic
const migrationPlan = this.createMigrationPlan(newShardCount);
for (const migration of migrationPlan) {
await this.migrateShard(migration);
}
}
private hashKey(key: string): number {
// Consistent hashing implementation
return createHash('sha256')
.update(key)
.digest()
.readUInt32BE(0);
}
}
// AI implements multi-level caching
"Design caching strategy for e-commerce platform:
- Browser cache for static assets
- CDN for global distribution
- Application-level cache
- Database query cache
- Cache invalidation strategy"
class CacheArchitecture {
// Level 1: Browser Cache
configureBrowserCache() {
return {
static: {
maxAge: 31536000, // 1 year
immutable: true
},
dynamic: {
maxAge: 0,
mustRevalidate: true,
etag: true
}
};
}
// Level 2: CDN Configuration
configureCDN() {
return {
provider: 'CloudFront',
origins: [
{
domain: 'api.example.com',
cacheByHeaders: ['Accept', 'Authorization'],
cacheByQueryString: ['version', 'lang']
}
],
behaviors: [
{
path: '/api/*',
ttl: 300,
compress: true
},
{
path: '/static/*',
ttl: 86400,
compress: true
}
]
};
}
// Level 3: Application Cache
class ApplicationCache {
private localCache = new LRUCache<string, any>({
max: 1000,
ttl: 1000 * 60 * 5 // 5 minutes
});
private redisCache: RedisClient;
async get<T>(key: string): Promise<T | null> {
// Check local cache first
const local = this.localCache.get(key);
if (local) return local;
// Check Redis
const cached = await this.redisCache.get(key);
if (cached) {
const parsed = JSON.parse(cached);
this.localCache.set(key, parsed);
return parsed;
}
return null;
}
async set<T>(
key: string,
value: T,
ttl: number = 3600
): Promise<void> {
// Set in both caches
this.localCache.set(key, value);
await this.redisCache.setex(
key,
ttl,
JSON.stringify(value)
);
// Publish invalidation event for other instances
await this.publishInvalidation(key);
}
async invalidate(pattern: string): Promise<void> {
// Clear local cache
for (const key of this.localCache.keys()) {
if (key.match(pattern)) {
this.localCache.delete(key);
}
}
// Clear Redis keys
const keys = await this.redisCache.keys(pattern);
if (keys.length > 0) {
await this.redisCache.del(...keys);
}
// Notify other instances
await this.publishInvalidation(pattern);
}
}
}
// AI implements zero trust architecture
"Design zero trust security architecture:
- Service-to-service authentication
- End-to-end encryption
- Principle of least privilege
- Continuous verification
- Security monitoring"
class ZeroTrustArchitecture {
// Service mesh configuration
configureServiceMesh() {
return {
type: 'Istio',
mtls: {
mode: 'STRICT',
certRotation: '24h'
},
authorization: {
defaultPolicy: 'DENY',
rules: this.generateAuthorizationRules()
},
observability: {
tracing: true,
metrics: true,
accessLogs: true
}
};
}
// API Gateway security
class SecureAPIGateway {
async authenticateRequest(request: Request): Promise<AuthContext> {
// Extract token
const token = this.extractToken(request);
if (!token) {
throw new UnauthorizedError('Missing authentication token');
}
// Verify JWT
const claims = await this.verifyJWT(token);
// Check token binding
if (claims.cnf) {
await this.verifyTokenBinding(request, claims.cnf);
}
// Verify device trust
const deviceTrust = await this.verifyDeviceTrust(request);
if (!deviceTrust.trusted) {
throw new UnauthorizedError('Untrusted device');
}
// Check user risk score
const riskScore = await this.calculateRiskScore(claims.sub, request);
if (riskScore > 0.7) {
await this.triggerMFA(claims.sub);
}
return {
userId: claims.sub,
permissions: await this.getPermissions(claims.sub),
sessionId: claims.sid,
riskScore
};
}
private async verifyJWT(token: string): Promise<JWTClaims> {
// Verify signature
const decoded = jwt.verify(token, this.publicKey, {
algorithms: ['RS256'],
issuer: this.config.issuer,
audience: this.config.audience
});
// Check revocation
const revoked = await this.checkRevocation(decoded.jti);
if (revoked) {
throw new UnauthorizedError('Token revoked');
}
return decoded;
}
}
// Data encryption
class EncryptionService {
async encryptSensitiveData(
data: any,
classification: DataClassification
): Promise<EncryptedData> {
// Choose encryption based on classification
const strategy = this.getEncryptionStrategy(classification);
// Generate DEK (Data Encryption Key)
const dek = await this.generateDEK();
// Encrypt data
const encrypted = await strategy.encrypt(data, dek);
// Encrypt DEK with KEK (Key Encryption Key)
const encryptedDEK = await this.kms.encrypt(dek, {
keyId: strategy.kekId,
context: {
classification: classification,
timestamp: Date.now()
}
});
return {
data: encrypted,
dek: encryptedDEK,
algorithm: strategy.algorithm,
classification
};
}
}
}
// AI designs performance architecture
"Create high-performance architecture for real-time analytics:
- Sub-second query response
- Handle 1M events/second
- Real-time aggregations
- Historical data analysis
- Cost-effective storage"
class PerformanceArchitecture {
// Event ingestion pipeline
class EventIngestionPipeline {
private buffer: RingBuffer<Event>;
private batchProcessor: BatchProcessor;
async ingest(event: Event): Promise<void> {
// Add to ring buffer for batching
this.buffer.add(event);
// Process if batch is full
if (this.buffer.size >= this.batchSize) {
await this.processBatch();
}
}
private async processBatch(): Promise<void> {
const batch = this.buffer.drain();
// Parallel processing
await Promise.all([
this.writeToHotStorage(batch),
this.updateRealTimeAggregates(batch),
this.publishToStreamProcessors(batch)
]);
}
private async writeToHotStorage(events: Event[]): Promise<void> {
// Write to time-series database for recent data
const timeSeries = events.map(e => ({
metric: e.type,
timestamp: e.timestamp,
value: e.value,
tags: e.tags
}));
await this.timeSeriesDB.writeBatch(timeSeries);
}
}
// Query optimization
class QueryOptimizer {
async optimizeQuery(query: AnalyticsQuery): Promise<OptimizedQuery> {
// Analyze query pattern
const pattern = this.analyzePattern(query);
// Choose execution strategy
if (pattern.isRealTime && pattern.timeRange < 3600) {
return this.optimizeForHotPath(query);
} else if (pattern.isAggregation) {
return this.optimizeForPreAggregates(query);
} else {
return this.optimizeForColdStorage(query);
}
}
private optimizeForHotPath(query: AnalyticsQuery): OptimizedQuery {
return {
executor: 'TimeSeriesDB',
indexes: ['timestamp', 'metric_type'],
cacheKey: this.generateCacheKey(query),
ttl: 60,
parallel: true
};
}
}
// Storage tiering
class StorageTiering {
async tierData(): Promise<void> {
// Hot tier: Last 24 hours in memory
// Warm tier: Last 30 days in SSD
// Cold tier: Older than 30 days in object storage
const cutoffs = {
hot: Date.now() - 24 * 60 * 60 * 1000,
warm: Date.now() - 30 * 24 * 60 * 60 * 1000
};
// Move data between tiers
await Promise.all([
this.moveToWarmTier(cutoffs.hot),
this.moveToColdTier(cutoffs.warm),
this.compactColdTier()
]);
}
}
}
# AI creates cloud-native architecture
"Design Kubernetes-native application architecture:
- Stateless services
- ConfigMaps and Secrets
- Health checks and probes
- Resource limits
- Horizontal pod autoscaling"
# AI generates architecture
apiVersion: v1
kind: ConfigMap
metadata:
name: app-config
data:
database.host: "postgres.database.svc.cluster.local"
cache.nodes: "redis-0.redis:6379,redis-1.redis:6379"
features.flags: |
{
"new-ui": true,
"beta-features": false
}
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: app-stateful
spec:
serviceName: app-stateful
replicas: 3
selector:
matchLabels:
app: app-stateful
template:
metadata:
labels:
app: app-stateful
annotations:
prometheus.io/scrape: "true"
prometheus.io/port: "9090"
spec:
initContainers:
- name: init-schema
image: migrate/migrate
command: ['migrate', '-path', '/migrations', '-database', '$(DATABASE_URL)', 'up']
env:
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: database-secret
key: url
containers:
- name: app
image: myapp:latest
ports:
- containerPort: 8080
name: http
- containerPort: 9090
name: metrics
env:
- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: POD_IP
valueFrom:
fieldRef:
fieldPath: status.podIP
envFrom:
- configMapRef:
name: app-config
- secretRef:
name: app-secrets
resources:
requests:
memory: "512Mi"
cpu: "500m"
limits:
memory: "1Gi"
cpu: "1000m"
livenessProbe:
httpGet:
path: /health/live
port: 8080
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /health/ready
port: 8080
initialDelaySeconds: 5
periodSeconds: 5
startupProbe:
httpGet:
path: /health/startup
port: 8080
failureThreshold: 30
periodSeconds: 10
volumeMounts:
- name: data
mountPath: /data
volumeClaimTemplates:
- metadata:
name: data
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 10Gi
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: app-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: app-deployment
minReplicas: 3
maxReplicas: 100
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
- type: Pods
pods:
metric:
name: http_requests_per_second
target:
type: AverageValue
averageValue: "1000"
behavior:
scaleDown:
stabilizationWindowSeconds: 300
policies:
- type: Percent
value: 10
periodSeconds: 60
scaleUp:
stabilizationWindowSeconds: 0
policies:
- type: Percent
value: 100
periodSeconds: 15
- type: Pods
value: 4
periodSeconds: 15
selectPolicy: Max

Modern architecture design is rarely a solo endeavor. Cursor IDE’s collaboration features enable teams to design, review, and implement architectures together, ensuring alignment and knowledge sharing across the organization.

// Team discusses architecture in Slack
"@Cursor analyze the proposed microservices split in this thread"
// Cursor reads entire Slack thread, creates:
// - Architecture diagram
// - Service boundaries analysis
// - Team concerns addressed
// - Alternative approaches

Benefits:

  • Entire team participates in design
  • Decisions documented in context
  • AI captures all perspectives
  • Async collaboration enabled

Multi-Developer Architecture Implementation

Section titled “Multi-Developer Architecture Implementation”

When implementing complex architectures across teams:

  1. Divide by Domain

    Terminal window
    # Team A: User Domain
    cursor --user-data-dir ~/.cursor-user-service services/user
    # "Implement user service following architecture doc"
    # Team B: Order Domain
    cursor --user-data-dir ~/.cursor-order-service services/order
    # "Implement order service with event sourcing"
    # Team C: API Gateway
    cursor --user-data-dir ~/.cursor-gateway gateway/
    # "Implement GraphQL gateway aggregating services"
  2. Share Context via MCP

    // Shared .cursor/mcp.json
    {
    "mcpServers": {
    "confluence": {
    "command": "confluence-mcp",
    "args": ["--space", "ARCH"],
    "env": {
    "CONFLUENCE_TOKEN": "$CONFLUENCE_TOKEN"
    }
    },
    "figma": {
    "command": "figma-mcp",
    "args": ["--file", "architecture-diagrams"]
    }
    }
    }
  3. Synchronize via Background Agents

    // Each team runs background agent
    "Monitor other services for interface changes,
    update our service contracts accordingly"
    // Agent watches git, updates interfaces
    // Posts to Slack when conflicts detected

Architecture Decision Records (ADR) Workflow

Section titled “Architecture Decision Records (ADR) Workflow”

Collaborative ADR Process

1. **Propose** (Any team member)
"Draft ADR for switching to event-driven architecture"
2. **Discuss** (Team reviews in PR)
- AI summarizes implications
- BugBot checks for conflicts
- Team comments/votes
3. **Implement** (Multiple developers)
- Each takes specific services
- AI ensures ADR compliance
- Automated verification
4. **Document** (AI-assisted)
"Update architecture docs based on ADR-007"

Real-World Example: Migrating Monolith to Microservices

Section titled “Real-World Example: Migrating Monolith to Microservices”

Exercise 1: Design Microservices Architecture

Section titled “Exercise 1: Design Microservices Architecture”
  1. Analyze monolithic application with AI
  2. Identify service boundaries
  3. Design communication patterns
  4. Plan data architecture
  5. Create deployment strategy
  1. Design event schema
  2. Choose message broker
  3. Implement publishers and consumers
  4. Add error handling and retries
  5. Create monitoring dashboard
  1. Design API architecture
  2. Implement caching layers
  3. Add rate limiting
  4. Configure auto-scaling
  5. Load test and optimize

Start Simple

Begin with simple architecture and evolve based on needs

Design for Failure

Assume components will fail and design accordingly

Monitor Everything

Comprehensive monitoring from day one

Document Decisions

Record architectural decisions and rationale

DevOps Integration

Implement CI/CD for your architecture

Performance Testing

Validate architecture under load

Security Review

Conduct security architecture review