Skip to content

Token Management: Maximizing AI Efficiency

Token Management: Maximizing AI Efficiency

Section titled “Token Management: Maximizing AI Efficiency”

Understanding and optimizing token usage is crucial for efficient AI-assisted development. This guide covers advanced strategies for managing tokens, reducing costs, and maximizing the value of every AI interaction.

What is a Token?

Roughly 4 characters of text. “Hello, world!” ≈ 3 tokens

Context Window

Maximum tokens per request (8K to 1M+ depending on model)

Pricing Structure

Charged per 1K tokens for both input and output

Token Limits

Rate limits and monthly quotas vary by plan

// Token estimation utilities
class TokenCalculator {
// Rough estimation: 1 token ≈ 4 characters
private readonly CHARS_PER_TOKEN = 4;
estimateTokens(text: string): number {
// More accurate estimation considering:
// - Whitespace and punctuation
// - Code syntax overhead
// - Special characters
const baseTokens = text.length / this.CHARS_PER_TOKEN;
const codeMultiplier = this.getCodeMultiplier(text);
return Math.ceil(baseTokens * codeMultiplier);
}
private getCodeMultiplier(text: string): number {
const indicators = {
hasCode: /```[\s\S]*```/.test(text),
hasJSON: /\{[\s\S]*\}/.test(text),
hasSpecialChars: /[^\x00-\x7F]/.test(text),
hasIndentation: /^\s{2,}/m.test(text)
};
let multiplier = 1.0;
if (indicators.hasCode) multiplier *= 1.2;
if (indicators.hasJSON) multiplier *= 1.15;
if (indicators.hasSpecialChars) multiplier *= 1.1;
if (indicators.hasIndentation) multiplier *= 1.05;
return multiplier;
}
}
// Intelligent context layering
class ContextLayerManager {
private layers = {
immediate: 2000, // Current file + direct deps
relevant: 5000, // Related files in module
extended: 10000, // Broader codebase context
reference: 20000 // Documentation and examples
};
async buildOptimalContext(task: Task): Promise<Context> {
const context = new Context();
// Start with immediate context
context.add(await this.getImmediateContext(task));
// Add layers based on task complexity
if (task.complexity > 5) {
context.add(await this.getRelevantContext(task));
}
if (task.requiresArchitecturalKnowledge) {
context.add(await this.getExtendedContext(task));
}
// Always leave room for response
const responseBuffer = this.estimateResponseSize(task);
return this.pruneContext(context, responseBuffer);
}
private pruneContext(context: Context, responseBuffer: number): Context {
const maxTokens = this.getMaxTokensForModel() - responseBuffer;
if (context.tokenCount <= maxTokens) {
return context;
}
// Intelligent pruning
return this.intelligentPrune(context, maxTokens);
}
}
// Remove unnecessary tokens from code context
class CodeMinifier {
minifyForContext(code: string): string {
// Remove comments (except JSDoc)
code = code.replace(/\/\/(?!\/)[^\n]*/g, '');
code = code.replace(/\/\*(?![\*!])[^*]*\*+(?:[^/*][^*]*\*+)*\//g, '');
// Remove extra whitespace
code = code.replace(/\s+/g, ' ');
code = code.replace(/\s*([{}();,])\s*/g, '$1');
// Remove console.logs in context
code = code.replace(/console\.(log|warn|error)\([^)]*\);?/g, '');
return code.trim();
}
preserveStructure(code: string): string {
// Keep structure but minimize tokens
return code
.split('\n')
.map(line => {
// Preserve indentation structure
const indent = line.match(/^\s*/)[0];
const content = line.trim();
// Skip empty lines
if (!content) return '';
// Minimize but keep readable
return indent + content;
})
.filter(Boolean)
.join('\n');
}
}
// Choose optimal model based on token requirements
class ModelSelector {
private models = {
'claude-4-haiku': {
contextWindow: 8192,
costPer1kInput: 0.0003,
costPer1kOutput: 0.0015,
speed: 'fast',
quality: 'good'
},
'claude-4-sonnet': {
contextWindow: 200000,
costPer1kInput: 0.003,
costPer1kOutput: 0.015,
speed: 'medium',
quality: 'excellent'
},
'claude-4-opus': {
contextWindow: 200000,
costPer1kInput: 0.015,
costPer1kOutput: 0.075,
speed: 'slow',
quality: 'best'
},
'gemini-2.5-pro': {
contextWindow: 1000000,
costPer1kInput: 0.002,
costPer1kOutput: 0.008,
speed: 'fast',
quality: 'excellent'
}
};
selectOptimalModel(context: Context, task: Task): ModelChoice {
const factors = {
contextSize: context.tokenCount,
taskComplexity: task.complexity,
qualityRequired: task.qualityRequirement,
budgetConstraint: task.maxCost,
speedRequirement: task.urgency
};
// Filter by context window
const compatible = Object.entries(this.models)
.filter(([_, model]) => model.contextWindow >= factors.contextSize);
// Score each model
const scored = compatible.map(([name, model]) => ({
name,
model,
score: this.scoreModel(model, factors)
}));
// Return best match
return scored.sort((a, b) => b.score - a.score)[0];
}
}
Task TypeRecommended ModelContext StrategyExpected Tokens
Simple EditsHaikuMinimal (2-3K)500-1K output
Feature DevSonnetModerate (10-20K)2-5K output
RefactoringSonnet/OpusExtended (20-50K)5-10K output
ArchitectureOpus/GeminiFull (50K+)10K+ output
Bug AnalysisGeminiTargeted (30K)3-5K output
// Monitor token usage across sessions
class TokenMonitor {
private usage = new Map<string, TokenUsage>();
async trackRequest(request: AIRequest, response: AIResponse) {
const usage: TokenUsage = {
timestamp: new Date(),
model: request.model,
inputTokens: await this.countTokens(request.prompt),
outputTokens: await this.countTokens(response.content),
cost: this.calculateCost(request.model, inputTokens, outputTokens),
task: request.metadata.task,
user: request.metadata.user
};
this.recordUsage(usage);
this.checkAlerts(usage);
}
async generateReport(period: Period): Promise<UsageReport> {
const usage = this.getUsageForPeriod(period);
return {
totalTokens: usage.reduce((sum, u) => sum + u.inputTokens + u.outputTokens, 0),
totalCost: usage.reduce((sum, u) => sum + u.cost, 0),
byModel: this.groupByModel(usage),
byTask: this.groupByTask(usage),
byUser: this.groupByUser(usage),
trends: this.analyzeTrends(usage),
recommendations: this.generateRecommendations(usage)
};
}
}
// Analytics for token optimization
class TokenAnalytics {
analyzePatterns(usage: TokenUsage[]): AnalysisResult {
return {
inefficientPatterns: this.findInefficiencies(usage),
optimizationOpportunities: this.findOptimizations(usage),
costSavingPotential: this.calculateSavings(usage),
userBehaviors: this.analyzeUserPatterns(usage)
};
}
private findInefficiencies(usage: TokenUsage[]): Inefficiency[] {
const inefficiencies = [];
// Large context for simple tasks
const oversizedContexts = usage.filter(u =>
u.task.complexity < 3 && u.inputTokens > 10000
);
// Repeated similar requests
const duplicates = this.findDuplicateRequests(usage);
// Inefficient model selection
const suboptimalModels = usage.filter(u =>
this.isSuboptimalModel(u)
);
return [...oversizedContexts, ...duplicates, ...suboptimalModels];
}
}
// Cache AI responses to reduce token usage
class ResponseCache {
private cache = new LRUCache<string, CachedResponse>({
max: 1000,
ttl: 1000 * 60 * 60 * 24, // 24 hours
updateAgeOnGet: true
});
async getCachedOrGenerate(
prompt: string,
generator: () => Promise<Response>
): Promise<Response> {
const key = this.generateCacheKey(prompt);
const cached = this.cache.get(key);
if (cached && this.isValid(cached)) {
// Check if context has changed significantly
if (await this.contextStillValid(cached)) {
this.recordCacheHit(key);
return cached.response;
}
}
// Generate new response
const response = await generator();
// Cache if appropriate
if (this.shouldCache(prompt, response)) {
this.cache.set(key, {
response,
prompt,
timestamp: Date.now(),
contextHash: await this.hashContext()
});
}
return response;
}
}
// Reuse parts of previous responses
class PartialResponseCache {
async findReusableSegments(newPrompt: string): Promise<ReusableSegment[]> {
const segments = [];
const similar = await this.findSimilarPrompts(newPrompt);
for (const cached of similar) {
const reusable = this.extractReusableSegments(
cached.prompt,
cached.response,
newPrompt
);
segments.push(...reusable);
}
return this.rankByRelevance(segments, newPrompt);
}
buildPromptWithCache(
basePrompt: string,
segments: ReusableSegment[]
): EnhancedPrompt {
return {
prompt: basePrompt,
context: segments.map(s => ({
type: 'cached_response',
content: s.content,
relevance: s.relevance
})),
expectedSavings: this.estimateTokenSavings(segments)
};
}
}
// Manage token budgets across teams and projects
class TokenBudgetManager {
private budgets = new Map<string, Budget>();
async allocateBudget(period: Period): Promise<AllocationPlan> {
const totalBudget = this.getTotalBudget(period);
const teams = await this.getTeams();
const historicalUsage = await this.getHistoricalUsage();
// Smart allocation based on multiple factors
const allocations = teams.map(team => ({
team,
allocation: this.calculateAllocation(team, {
historicalUsage: historicalUsage[team.id],
teamSize: team.size,
projectPriority: team.priority,
efficiency: this.calculateEfficiency(team)
})
}));
return {
period,
totalBudget,
allocations,
rules: this.generateBudgetRules(allocations)
};
}
enforcebudget(request: TokenRequest): Promise<boolean> {
const budget = this.budgets.get(request.teamId);
if (!budget) return false;
const projected = budget.used + request.estimatedTokens;
if (projected > budget.limit) {
// Check if request qualifies for exception
if (this.qualifiesForException(request)) {
return this.requestBudgetException(request);
}
return false;
}
return true;
}
}

Prompt Templates

Reuse optimized prompts for common tasks

Batch Processing

Combine multiple small requests into one

Progressive Enhancement

Start simple, add context only if needed

Off-Peak Usage

Schedule non-urgent tasks for lower rates

// Intelligently prune context based on relevance
class DynamicContextPruner {
async pruneContext(
context: Context,
targetTokens: number
): Promise<PrunedContext> {
// Score each context item
const scored = await Promise.all(
context.items.map(async item => ({
item,
score: await this.scoreRelevance(item, context.task)
}))
);
// Sort by relevance
scored.sort((a, b) => b.score - a.score);
// Select items within token budget
const selected = [];
let tokenCount = 0;
for (const { item, score } of scored) {
const itemTokens = await this.countTokens(item);
if (tokenCount + itemTokens <= targetTokens) {
selected.push(item);
tokenCount += itemTokens;
} else if (score > 0.8) {
// Try to compress high-value items
const compressed = await this.compress(item);
if (tokenCount + compressed.tokens <= targetTokens) {
selected.push(compressed.item);
tokenCount += compressed.tokens;
}
}
}
return {
items: selected,
totalTokens: tokenCount,
prunedItems: scored.length - selected.length
};
}
}
// Reuse tokens from previous interactions
class TokenRecycler {
async recycleTokens(conversation: Conversation): Promise<RecycledContext> {
const messages = conversation.messages;
const recycled = [];
// Identify reusable segments
for (let i = 0; i < messages.length - 1; i++) {
const message = messages[i];
if (this.isReusable(message)) {
recycled.push({
content: this.extractReusableContent(message),
summary: await this.summarize(message),
tokens: await this.countTokens(message)
});
}
}
// Build compressed context
return {
summary: this.buildSummary(recycled),
keyPoints: this.extractKeyPoints(recycled),
savedTokens: this.calculateSavings(messages, recycled)
};
}
}
// Manage shared token pools for teams
class SharedTokenPool {
async drawFromPool(request: PoolRequest): Promise<TokenAllocation> {
const pool = await this.getPool(request.teamId);
// Check availability
if (pool.available < request.tokens) {
// Try to borrow from other pools
const borrowed = await this.borrowTokens(
request.teamId,
request.tokens - pool.available
);
if (!borrowed.success) {
throw new InsufficientTokensError();
}
}
// Allocate tokens
const allocation = {
tokens: request.tokens,
user: request.userId,
purpose: request.purpose,
timestamp: new Date(),
expiresAt: this.calculateExpiry(request)
};
await this.recordAllocation(allocation);
return allocation;
}
}
  1. Monitor Continuously

    • Track token usage in real-time
    • Set up alerts for unusual patterns
    • Review usage reports weekly
  2. Optimize Proactively

    • Compress context before sending
    • Cache frequent responses
    • Use appropriate models for each task
  3. Educate Team

    • Share token optimization techniques
    • Create guidelines for efficient prompts
    • Reward efficient token usage
  4. Iterate and Improve

    • Analyze usage patterns
    • Refine optimization strategies
    • Update templates and caches
  • Implement token counting before requests
  • Set up response caching
  • Configure model selection logic
  • Create context compression utilities
  • Establish token budgets
  • Monitor usage patterns
  • Optimize prompt templates
  • Train team on best practices
MetricFormulaTarget
Token EfficiencyOutput Value / Tokens Used>0.8
Cache Hit RateCached Responses / Total Requests>30%
Cost per FeatureToken Cost / Features DeliveredDecreasing
Context EfficiencyRelevant Tokens / Total Context>70%
  1. Audit Current Usage - Analyze your team’s token patterns
  2. Implement Monitoring - Set up tracking and alerts
  3. Optimize Workflows - Apply compression and caching
  4. Measure Impact - Track improvements over time

Remember: Effective token management isn’t about using fewer tokens—it’s about extracting maximum value from every token used. Focus on ROI, not just cost reduction.