Skip to content

Performance Optimization: Speed at Scale

As your codebase grows and your team scales, maintaining Cursor’s performance becomes critical. This guide covers advanced optimization techniques that keep Cursor responsive even under heavy load.

Indexing Overhead

Initial and incremental indexing can consume significant CPU/memory

Context Window Size

Large context windows slow down AI responses exponentially

Extension Conflicts

Extensions can interfere with Cursor’s AI features

Network Latency

API calls to AI models can be bottlenecked by network speed

ComponentMinimumRecommendedOptimal
RAM8GB16GB32GB+
CPU4 cores8 cores12+ cores
StorageSSD 256GBNVMe 512GBNVMe 1TB+
Network10 Mbps50 Mbps100+ Mbps
Terminal window
# Increase file descriptor limits
sudo launchctl limit maxfiles 65536 200000
# Disable Spotlight indexing for code directories
sudo mdutil -i off /path/to/code
# Increase shared memory
sudo sysctl -w kern.sysv.shmmax=2147483648
sudo sysctl -w kern.sysv.shmall=524288
# Add to /etc/sysctl.conf for persistence
echo "kern.sysv.shmmax=2147483648" | sudo tee -a /etc/sysctl.conf
echo "kern.sysv.shmall=524288" | sudo tee -a /etc/sysctl.conf
// Cursor performance configuration
{
"cursor.performance.memoryLimit": "8GB",
"cursor.performance.maxWorkers": 6,
"cursor.performance.cacheSize": "2GB",
"cursor.performance.enableLazyLoading": true,
"cursor.performance.garbageCollection": "aggressive",
"cursor.performance.indexingThreads": 4,
"cursor.performance.searchCacheEnabled": true,
"cursor.performance.searchCacheSize": "1GB",
"cursor.performance.incrementalIndexing": true,
"cursor.performance.indexingBatchSize": 100
}

Create an optimized .cursorignore file:

Terminal window
# .cursorignore - Maximize indexing performance
# Dependencies and packages
node_modules/
vendor/
packages/*/node_modules/
**/bower_components/
.pnpm-store/
.yarn/
# Build outputs
dist/
build/
out/
target/
*.min.js
*.min.css
*.map
# Large generated files
coverage/
*.generated.*
*.pb.go
*.pb.js
schema.graphql
package-lock.json
yarn.lock
pnpm-lock.yaml
# Media and binaries
*.jpg
*.jpeg
*.png
*.gif
*.mp4
*.pdf
*.zip
*.tar.gz
# Logs and databases
*.log
*.sqlite
*.db
# IDE and system files
.idea/
.vscode/
.DS_Store
Thumbs.db
# Test fixtures and data
fixtures/
__fixtures__/
testdata/
*.snapshot
__snapshots__/
// Context optimization patterns
// 1. Layered Context Approach
class ContextOptimizer {
// Start with minimal context
async getMinimalContext(task: string) {
return {
currentFile: this.getCurrentFile(),
directImports: await this.getDirectImports(),
recentChanges: this.getRecentChanges(5)
};
}
// Expand as needed
async expandContext(feedback: string) {
const additionalContext = await this.analyzeNeeds(feedback);
return this.addContext(additionalContext);
}
// Never exceed limits
async pruneContext(context: Context) {
const tokenCount = await this.countTokens(context);
if (tokenCount > this.maxTokens) {
return this.intelligentPrune(context);
}
return context;
}
}
// Monitor and optimize context usage
class ContextMonitor {
private contextHistory: ContextUsage[] = [];
async analyzeUsage() {
const stats = {
averageTokens: this.calculateAverage(),
peakUsage: this.findPeak(),
wastedTokens: this.identifyWaste(),
optimalSize: this.calculateOptimal()
};
return {
stats,
recommendations: this.generateRecommendations(stats)
};
}
private identifyWaste() {
// Find included files that were never referenced
return this.contextHistory
.flatMap(usage => usage.includedFiles)
.filter(file => !this.wasReferenced(file));
}
}
// Intelligent model selection
class ModelSelector {
selectModel(task: TaskType): Model {
switch (task.complexity) {
case 'simple':
// Fast, lightweight model
return {
model: 'claude-4-sonnet',
temperature: 0.3,
maxTokens: 2000
};
case 'medium':
// Balanced model
return {
model: 'claude-4-sonnet',
temperature: 0.5,
maxTokens: 4000
};
case 'complex':
// Powerful but slower
return {
model: 'claude-4-opus',
temperature: 0.7,
maxTokens: 8000
};
case 'analysis':
// Long context model
return {
model: 'gemini-2.5-pro',
temperature: 0.4,
maxTokens: 100000
};
}
}
}
Task TypeModel ChoiceResponse TimeQualityToken Cost
Quick fixesSonnet 4under 2sGoodLow
Feature developmentSonnet 42-5sVery GoodMedium
Complex refactoringOpus 45-10sExcellentHigh
Codebase analysisGemini 2.53-8sVery GoodMedium
Deep debuggingo310-20sExcellentVery High

Identifying Performance-Impacting Extensions

Section titled “Identifying Performance-Impacting Extensions”
Terminal window
# Debug extension performance issues
cursor --inspect-brk-extensions 9229
# Run in safe mode (no extensions)
cursor --disable-extensions
# To find problematic extensions:
# 1. Disable all extensions via UI
# 2. Enable them one by one to isolate issues
  • Disable unused extensions
  • Check for extension conflicts with AI features
  • Update all extensions to latest versions
  • Remove duplicate functionality extensions
  • Configure extensions to lazy-load
{
// Disable extensions that conflict with Cursor AI
"extensions.disabled": [
"github.copilot",
"tabnine.tabnine-vscode",
"visualstudioexptteam.vscodeintellicode"
],
// Lazy load heavy extensions
"extensions.experimental.affinity": {
"vscodevim.vim": 1,
"dbaeumer.vscode-eslint": 2,
"esbenp.prettier-vscode": 2
}
}
// Implement intelligent caching
class ResponseCache {
private cache = new Map<string, CachedResponse>();
private readonly TTL = 5 * 60 * 1000; // 5 minutes
async getCachedOrFetch(
prompt: string,
fetcher: () => Promise<Response>
): Promise<Response> {
const key = this.hashPrompt(prompt);
const cached = this.cache.get(key);
if (cached && !this.isExpired(cached)) {
return cached.response;
}
const response = await fetcher();
this.cache.set(key, {
response,
timestamp: Date.now()
});
return response;
}
}
{
"cursor.network.connectionPool": {
"maxSockets": 10,
"maxFreeSockets": 5,
"timeout": 60000,
"keepAlive": true,
"keepAliveMsecs": 30000
},
"cursor.network.http2": {
"enabled": true,
"maxConcurrentStreams": 100
}
}
// Real-time performance monitoring
class PerformanceMonitor {
private metrics = {
indexingTime: new MetricCollector('indexing'),
searchLatency: new MetricCollector('search'),
aiResponseTime: new MetricCollector('ai_response'),
memoryUsage: new MetricCollector('memory'),
cpuUsage: new MetricCollector('cpu')
};
startMonitoring() {
// Collect metrics every 30 seconds
setInterval(() => {
this.collectMetrics();
this.analyzeThresholds();
this.generateAlerts();
}, 30000);
}
private analyzeThresholds() {
const alerts = [];
if (this.metrics.memoryUsage.current > 0.9) {
alerts.push('High memory usage detected');
}
if (this.metrics.aiResponseTime.p95 > 10000) {
alerts.push('Slow AI responses detected');
}
return alerts;
}
}
// Enable performance logging
{
"cursor.telemetry.performanceLogging": true,
"cursor.telemetry.logLevel": "verbose",
"cursor.telemetry.logPath": "~/.cursor/performance.log",
"cursor.telemetry.metrics": [
"indexing",
"search",
"completion",
"memory",
"network"
]
}

A team optimized their massive monorepo:

  1. Partitioned the Codebase

    • Split into 12 logical workspaces
    • Only 2-3 active at a time
    • Result: 75% reduction in memory usage
  2. Optimized Indexing

    • Aggressive .cursorignore rules
    • Incremental indexing every 5 minutes
    • Result: Initial index from 45min to 8min
  3. Context Strategy

    • Layered context approach
    • Smart file inclusion
    • Result: 60% faster AI responses
  4. Model Selection

    • Sonnet for 90% of tasks
    • Opus only for architecture
    • Result: 40% cost reduction

Performance-critical environment optimizations:

// Ultra-low latency configuration
{
"cursor.performance": {
"mode": "performance",
"disableAnimations": true,
"disableTelemetry": true,
"minimalUI": true,
"aggressiveCaching": true,
"preloadModels": ["claude-4-sonnet"],
"dedicatedWorkers": 8
}
}
// Results:
// - Tab completion: under 50ms
// - Inline edits: under 100ms
// - Agent responses: under 2s average

High CPU Usage

  1. Check indexing status
  2. Review extension activity
  3. Monitor background processes
  4. Verify no infinite loops in rules

Slow Responses

  1. Test network speed
  2. Check context size
  3. Verify model availability
  4. Review API rate limits

Memory Leaks

  1. Restart Cursor periodically
  2. Clear cache directories
  3. Update to latest version
  4. Report persistent issues

Indexing Hangs

  1. Check .cursorignore
  2. Remove problematic files
  3. Reset index database
  4. Increase timeout settings
#!/bin/bash
# Full performance reset
# 1. Close Cursor
killall Cursor
# 2. Clear caches
rm -rf ~/.cursor/Cache
rm -rf ~/.cursor/CachedData
rm -rf ~/.cursor/GPUCache
# 3. Reset indexes
rm -rf ~/.cursor/IndexedDB
# 4. Clean workspace storage
rm -rf ~/.cursor/workspaceStorage
# 5. Restart with fresh profile
cursor --user-data-dir ~/.cursor-fresh
  1. Profile Before Optimizing

    • Measure actual bottlenecks
    • Don’t optimize prematurely
    • Focus on biggest impact areas
  2. Incremental Improvements

    • Make one change at a time
    • Measure impact of each change
    • Document what works
  3. Team-Wide Standards

    • Share performance configurations
    • Establish context size limits
    • Monitor aggregate metrics
  4. Regular Maintenance

    • Weekly cache clearing
    • Monthly extension review
    • Quarterly configuration audit
  1. Run Performance Audit - Use the diagnostic checklist
  2. Implement Quick Wins - Start with .cursorignore optimization
  3. Monitor Metrics - Set up performance tracking
  4. Continue to Privacy & Security - Ensure optimizations don’t compromise security

Remember: The fastest Cursor is one configured for your specific workflow. There’s no one-size-fits-all solution—experiment and measure to find your optimal setup.