High Consumption
- Large file uploads
- Repeated context
- Verbose prompts
- Trial-and-error iterations
AI coding tools can transform your productivity, but costs can quickly spiral without proper management. This guide provides proven strategies to maximize value while keeping expenses under control.
High Consumption
Low Consumption
Operation | Cursor (tokens) | Claude Code (tokens) | Cost Impact |
---|---|---|---|
Simple completion | 500-1K | N/A | Low |
Function generation | 2-5K | 3-8K | Medium |
Multi-file refactor | 10-50K | 20-100K | High |
Codebase analysis | 50-120K | 100-200K | Very High |
GPT-5 Model Variants & Pricing
Model | Input Cost | Output Cost | Best For |
---|---|---|---|
GPT-5 | $1.25/1M tokens | $10/1M tokens | Complex tasks, full app creation, deep reasoning |
GPT-5-mini | $0.75/1M tokens | $6/1M tokens | Simple coding tasks, balanced performance/cost |
Key Insight: GPT-5 is 50% cheaper than GPT-4o for input, with superior performance. GPT-5-mini offers excellent value for routine development tasks.
GPT-5 excels at creating complete applications from detailed PRDs:
# Optimal GPT-5 Usage Pattern1. Write comprehensive PRD with all requirements2. Include UI/UX specifications3. Define data models and API contracts4. Provide example code patterns5. Use GPT-5 standard for full generation
Result: Complete, working application in one shotCost: ~$5-15 for a small to medium app
// Choose the right GPT-5 variantconst selectGPT5Variant = (task) => { // GPT-5-mini: Cost-effective for routine tasks if (task.includes(['simple-fix', 'testing', 'basic-refactoring'])) { return 'gpt-5-mini'; }
// GPT-5: Full power for complex work if (task.includes(['architecture', 'full-app', 'complex-logic', 'debugging', 'major-refactoring'])) { return 'gpt-5'; }
// Default to mini for cost savings return 'gpt-5-mini';};
Scenario | Old (GPT-4) | New (GPT-5) | Savings |
---|---|---|---|
1M tokens input | $2.50 | $1.25 | 50% |
Simple coding tasks | GPT-4 | GPT-5-mini | 70% |
Full app build | Multiple iterations | One shot | 60-80% |
Complex debugging | GPT-4 | GPT-5 | 30-50% |
{ "ai": { "model": "claude-4-sonnet", // Cheaper than Opus "temperature": 0.3, // More deterministic "maxTokens": 2048, // Limit response size "useCache": true // Enable caching }}
# Bad: Multiple separate operationsclaude "Add error handling to user.js"claude "Add error handling to auth.js"claude "Add error handling to api.js"
# Good: Batch operationclaude "Add consistent error handling to all JS files in /src"
# Use focused searches instead of full codebaseclaude search "error handling patterns" --dir src/utils
# Cache project contextclaude init --cache-context
# Use memory for repeated patternsclaude memory add "Always use our custom error class"
The 80/20 Rule of Context
80% of your token usage comes from 20% of inefficient patterns. Focus on:
"Can you help me with this code? It's not working correctlyand I'm not sure what's wrong. Maybe it's the authenticationor possibly the database connection. Here's all my code..."
[Uploads 50 files]
Tokens used: 150,000+
"Fix TypeError in auth.js line 42. Error: Cannot readproperty 'userId' of undefined. Likely missing null check."
[Uploads only auth.js]
Tokens used: 2,000
Project-Level Caching
Session-Level Caching
Pattern-Level Caching
Cursor Monitoring
# Check usage in settingsCursor > Preferences > Usage
# Set spending limits"maxMonthlySpend": 50
Claude Monitoring
# Install usage trackernpm install -g ccusage
# Monitor in real-timeccusage --watch
// Custom usage monitorconst WARNING_THRESHOLD = 0.8; // 80% of budget
async function checkUsage() { const usage = await getMonthlyUsage(); const budget = await getBudgetLimit();
if (usage > budget * WARNING_THRESHOLD) { notify("Approaching budget limit", { current: usage, limit: budget, remaining: budget - usage }); }}
Task Type | Recommended Model | Relative Cost | Why |
---|---|---|---|
Simple completions | GPT-5-mini / Haiku | 1x | Fast, cost-effective |
Complex logic | Sonnet 4 | 5x | Good balance |
One-shot app creation | GPT-5 | 8x | Best for PRD to full app |
Architecture | Opus 4 | 25x | Deep reasoning needed |
Debugging | GPT-5-mini / Sonnet 4 | 3-5x | Great performance/cost ratio |
Refactoring | GPT-5 / Opus 4 | 8-25x | Worth the investment |
// Smart model selection with GPT-5 variantsfunction selectModel(task) { if (task.complexity === 'simple') return 'gpt-5-mini'; // Cost-effective option if (task.type === 'architecture') return 'claude-opus-4'; if (task.type === 'full-app') return 'gpt-5'; // Best for PRD to implementation if (task.size > 1000 && task.complexity === 'medium') return 'gpt-5-mini'; if (task.complexity === 'high') return 'gpt-5'; // Full power when needed return 'claude-sonnet-4'; // Default for general coding}
Tiered Budget System
Role | Monthly Budget | Tools | Rationale |
---|---|---|---|
Junior Dev | $20-30 | Cursor Pro | Learning focused |
Senior Dev | $50-100 | Cursor + Claude API | Complex tasks |
Architect | $150-200 | All tools | System design |
Manager | $10-20 | ChatGPT (GPT-5) | Planning only |
API Key Pooling
Knowledge Sharing
Batch Operations
❌ Uploading entire codebase repeatedly
❌ Vague, rambling prompts
❌ Trial-and-error debugging
❌ Forgetting previous context
❌ Using Opus for simple tasks
✅ Targeted file selection
✅ Clear, specific prompts
✅ Systematic debugging
✅ Building on context
✅ Right model for each task
Cost per Productive Output
Efficiency Score = (Features Shipped × Quality Score) / Total AI Spend
Example:- Developer A: 10 features × 0.9 quality / $200 = 0.045- Developer B: 6 features × 0.95 quality / $50 = 0.114
Developer B is 2.5x more cost-efficient despite shipping less
Metric | Target | How to Measure |
---|---|---|
Cost per feature | <$20 | AI spend / features shipped |
Token efficiency | >80% | Useful output / total tokens |
First-shot success | >70% | Single prompt solutions |
Context reuse | >50% | Cached vs fresh tokens |
Immediate Actions
Short-term Fixes
Long-term Solutions
Free Options
Hybrid Approach
Daily Optimization Habits
☐ Clear context between major tasks ☐ Use appropriate model for each task ☐ Batch similar operations ☐ Document successful prompts ☐ Monitor usage dashboard ☐ Share learnings with team ☐ Cache project context ☐ Review and optimize weekly