Refactoring is the art of improving code structure without changing its behavior. It’s where technical debt meets its reckoning, where legacy systems get a second life, and where Claude Code truly shines. This lesson explores how to leverage AI assistance for large-scale refactoring that would take months manually.
Scenario: You’ve inherited a 5-year-old e-commerce platform. 200,000 lines of code. jQuery spaghetti in the frontend. PHP 5.6 in the backend. No tests. Inconsistent patterns. The business wants to add real-time features, but touching anything risks breaking everything. Sound familiar?
Month 1: Analysis and planning
- Document all dependencies
- Create refactoring roadmap
Month 2-3: Write tests for critical paths
- Manually write test cases
- Hope you caught edge cases
Month 4-6: Incremental refactoring
- Update one module at a time
- Fix breaks as they appear
- Pray nothing slips through
Month 7+: Ongoing fixes and regression
Week 1: AI-powered analysis
> Analyze our codebase and identify:
> - Circular dependencies
> - Security vulnerabilities
Week 2-3: Automated test generation
> Generate comprehensive tests for all critical paths
> Include edge cases I might miss
Week 4-6: Systematic refactoring
> Refactor module by module with:
> - Automatic pattern updates
> - Dependency management
Week 7: Polish and optimization
Create a safety net
> Before we start refactoring:
> 1. Create a comprehensive test suite for current behavior
> 2. Set up git hooks for pre-commit testing
> 3. Configure CI/CD to catch regressions
> 4. Document current behavior
Analyze the current state
> Analyze our codebase and create a refactoring plan:
> - List deprecated patterns
> - Estimate complexity for each module
Set up refactoring infrastructure
Create .claude/commands/refactor-safely.md
:
Refactor $ARGUMENTS following these rules:
1. Maintain exact functionality
2. Write tests before changing code
3. Update one pattern at a time
4. Run tests after each change
5. Create descriptive commits
Configure incremental approach
"preserveComments" : true ,
From jQuery chaos to modern React/Vue/Angular
> Analyze our jQuery codebase and create a modernization plan.
> We want to migrate to React gradually while keeping the app functional.
Claude’s incremental strategy:
Phase 1: Preparation
// 1. Create abstraction layer
// Wrap jQuery for gradual replacement
$ ( selector ) . on ( ' click ' , handler );
this . trackUsage ( ' click ' , selector );
// 2. Replace direct jQuery calls
// Before: $('#button').click(handler)
// After: LegacyBridge.$('#button').onClick(handler)
Phase 2: Component Extraction
// Identify UI components in jQuery
> Find all jQuery UI patterns and extract them into components
// Claude identifies patterns like:
$ ( ' .user-card ' ) . each ( function () {
$ ( this ) . find ( ' .name ' ) . text ( userData . name );
$ ( this ) . find ( ' .email ' ) . text ( userData . email );
// Converts to React component:
const UserCard = ( { user } ) => (
< div className = " user-card " >
< div className = " name " > { user . name } </ div >
< div className = " email " > { user . email } </ div >
Phase 3: State Management
// From scattered jQuery state
var userLoggedIn = false ;
$ ( ' #login ' ) . click ( function () {
const useAuthStore = create ( ( set ) => ( {
login : () => set ( { isLoggedIn: true } ) ,
logout : () => set ( { isLoggedIn: false } )
Phase 4: Complete Migration
> Remove jQuery dependencies
> Remove legacy bridge code
// Result: Modern React app
// Type-safe with TypeScript
From PHP 5.6 spaghetti to modern PHP 8+ or Node.js
> Our backend is PHP 5.6 with:
> - No namespace organization
> - Direct MySQL queries (no ORM)
> - Global variables everywhere
> Create a plan to modernize to PHP 8.3 with Laravel
Claude’s systematic approach:
function calculateTotal ( $items , $tax ) {
foreach ( $items as $item ) {
$total += $item [ ' price ' ] * $item [ ' quantity ' ];
return $total + ( $total * $tax );
// After: PHP 8.3 with types
$subtotal = array_reduce (
fn ( $ carry , $ item ) => $ carry + ($ item -> price * $ item -> quantity ),
return $subtotal * ( 1 + $tax );
// Before: Procedural mess
$result = mysql_query ( " SELECT * FROM users WHERE id = $ user_id " );
$user = mysql_fetch_assoc ($ result );
// After: Repository pattern
namespace App\Repositories;
public function __construct (
public function find ( int $id ) : ? User
$stmt = $this-> db -> prepare (
' SELECT * FROM users WHERE id = :id '
$stmt -> execute ([ ' id ' => $id ]);
$data = $stmt -> fetch ( PDO :: FETCH_ASSOC );
return $data ? User :: fromArray ( $data ) : null ;
// Migrate to Laravel structure
> Convert our procedural PHP to Laravel :
> 1. Create models for each table
> 2. Convert queries to Eloquent
> 3. Extract business logic to services
> 4. Create proper routing
> 5. Add middleware for auth
// Result: Clean MVC architecture
Route :: middleware ([ ' auth ' ]) -> group ( function () {
Route :: get ( ' /users/{user} ' , [ UserController :: class , ' show ' ]);
Route :: post ( ' /users ' , [ UserController :: class , ' store ' ]);
class UserController extends Controller
public function __construct (
private UserService $userService
public function show ( User $user ) : JsonResponse
Refactoring database structure without downtime
> We need to refactor our database:
> - users table has 80 columns (denormalized)
> - No foreign keys or constraints
> - Inconsistent naming (userId vs user_id)
> - No indexes except primary keys
> Plan a gradual migration to normalized schema
Create migration strategy
-- Phase 1: Add new normalized tables alongside old
CREATE TABLE user_profiles (
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (user_id) REFERENCES users(id)
CREATE TABLE user_addresses (
type ENUM( ' billing ' , ' shipping ' ),
FOREIGN KEY (user_id) REFERENCES users(id),
INDEX idx_user_type (user_id, type )
Implement dual-write pattern
public function updateProfile ( $userId , $data ) {
// Write to both old and new structure
DB :: transaction ( function () use ( $userId , $data ) {
DB :: table ( ' users ' ) -> where ( ' id ' , $userId ) -> update ([
' fname ' => $data [ ' first_name ' ],
' lname ' => $data [ ' last_name ' ]
UserProfile :: updateOrCreate (
' first_name ' => $data [ ' first_name ' ],
' last_name ' => $data [ ' last_name ' ]
Migrate data progressively
> Create a background job to migrate user data:
> - Process in batches of 1000
> - Verify data integrity
> - Handle failures gracefully
Switch reads to new schema
// Feature flag controlled
if ( Feature :: enabled ( ' use_normalized_schema ' )) {
return User :: with ([ ' profile ' , ' addresses ' ]) -> find ( $id );
return DB :: table ( ' users ' ) -> where ( ' id ' , $id ) -> first ();
Complete the migration
-- After verification, drop old columns
Challenge: Extract services from a monolithic Rails application
> Our Rails monolith handles:
> Plan extraction of order processing into microservice
Claude’s extraction strategy:
# Claude analyzes and finds:
> Analyzing order processing boundaries...
Found order - related code in :
- app / models / order. rb ( and 12 related models)
- app / controllers / orders_controller. rb ( and 4 related)
- app / services / order_service. rb ( and 8 related)
- app / jobs / order_notification_job. rb
- User model ( for customer info)
- Product model ( for catalog)
# Create abstraction layer
module OrderServiceInterface
def initialize ( internal: true )
@client = internal ? InternalOrderService : HTTPOrderService
@client . create_order (params)
# This allows gradual migration
# New microservice structure
> Create order microservice with :
> - REST API matching our interface
> - Message queue integration
> - Own deployment pipeline
# Generated service includes:
class OrdersController < ApplicationController
order = OrderService . create (order_params)
# Publish event for other services
EventBus . publish ( ' order.created ' , order)
render json : OrderSerializer . new (order)
# Feature flag controlled routing
class OrdersController < ApplicationController
if Feature . enabled? ( : use_order_microservice , current_user)
response = OrderServiceClient . create_order (params)
@order = Order . create! (order_params)
Challenge: Convert synchronous operations to event-driven architecture
> Our system does everything synchronously:
> - Send email after order
> - Update inventory immediately
> - Calculate analytics in-request
> - Generate PDFs during API call
> Refactor to async event-driven pattern
Claude implements event-driven refactoring:
// Before: Synchronous coupling
async function createOrder ( orderData : OrderData ) {
const order = await db . orders . create (orderData);
// All of these block the response
await sendOrderConfirmationEmail (order);
await updateInventory (order . items );
await calculateAnalytics (order);
await generateInvoicePDF (order);
async function createOrder ( orderData : OrderData ) {
const order = await db . orders . create (orderData);
// Publish event and return immediately
await eventBus . publish ( ' order.created ' , {
customerId: order . customerId ,
// Separate handlers process async
eventBus . subscribe ( ' order.created ' , async ( event ) => {
emailService . sendOrderConfirmation (event),
inventoryService . updateStock (event . items ),
analyticsService . recordOrder (event),
pdfService . generateInvoice (event . orderId )
> Scan our codebase for anti-patterns and create fixes:
> - God objects (classes doing too much)
> - Shotgun surgery (changes require many edits)
> - Feature envy (methods using other class data)
> - Data clumps (same parameters everywhere)
Claude’s pattern detection and fixes:
God Object Fix
// Detected: UserService with 47 methods
// Authentication methods
// Refactored into focused services
class NotificationService {
Data Clump Fix
// Detected: Same 4 parameters in 15 methods
// Refactored with value object
For replacing legacy systems gradually:
> Implement strangler fig pattern for our legacy order system:
> - Current: Monolithic order processing
> - Target: Modern microservices architecture
> - Requirement: Zero downtime, gradual migration
Create facade
async createOrder ( data : OrderData ) {
if ( await this . shouldUseNewSystem (data)) {
return this . newOrderService . create (data);
return this . legacyOrderService . create (data);
private async shouldUseNewSystem ( data : OrderData ) {
if ( this . featureFlags . isEnabled ( ' new_order_system ' , data . customerId )) {
if (data . total < 100 && Math . random () < 0.1 ) { // 10% of small orders
Implement comparison mode
// Run both systems and compare
async createAndCompare ( data : OrderData ) {
const [ legacy , modern ] = await Promise . all ([
this . legacySystem . create (data),
this . modernSystem . create (data)
const differences = this . compareResults (legacy , modern);
if (differences . length > 0 ) {
await this . logDifferences (differences);
// Return legacy result but log modern
Gradual cutover
Week 1: 1% traffic to new system
Week 6: Remove legacy code
> Create a refactoring dashboard that tracks:
> - Code coverage improvement
> - Cyclomatic complexity reduction
> - Performance improvements
Claude generates tracking code:
class RefactoringMetrics {
coverage: await this . getTestCoverage () ,
complexity: await this . getCyclomaticComplexity () ,
performance: await this . getPerformanceMetrics () ,
codeQuality: await this . getCodeQualityScore () ,
technicalDebt: await this . calculateTechnicalDebt ()
improvements: this . compareWithBaseline (metrics),
roi: this . calculateROI (metrics)
async getTestCoverage () {
const coverage = await exec ( ' npm run coverage -- --json ' );
statements: coverage . total . statements . pct ,
branches: coverage . total . branches . pct ,
functions: coverage . total . functions . pct ,
lines: coverage . total . lines . pct
> Generate comprehensive tests to ensure refactoring doesn't change behavior:
> - Capture current behavior
> - Create golden master tests
> - Property-based testing
> - Regression test suite
> 1. Create feature branch
> 2. Make incremental commits
> 3. Run tests continuously
> 4. Use pull requests for review
> While refactoring, also:
> - Document new patterns
> - Create migration guides
> - Record decision rationale
> - Add new endpoints alongside old
> - Provide migration tools
> - Support both versions temporarily
if (Feature . enabled ( ' new_payment_system ' )) {
return this . newPaymentProcessor . charge (amount);
return this . legacyPaymentGateway . process (amount);
You’ve learned how to leverage Claude Code for large-scale refactoring that would be impossibly time-consuming manually. The key is thinking systematically: analyze comprehensively, refactor incrementally, validate continuously.
Remember: Refactoring is not about perfection - it’s about continuous improvement. Use Claude Code to handle the mechanical transformations while you focus on architectural decisions and business value. With AI assistance, you can tackle technical debt that’s been accumulating for years and transform legacy systems into modern, maintainable codebases.