Skip to content

AI Model Comparison Guide

This guide provides a comprehensive comparison of AI models available in Cursor IDE and Claude Code, helping you choose the right model for your specific development tasks.

Primary Development Models (2025)

  • Claude Sonnet 4: Workhorse model - excellent balance of capability and cost
  • Claude Opus 4: Premium model (5x cost) - complex architectural planning
  • OpenAI o3: Specialized for debugging and intricate problem-solving
  • Gemini 2.5 Pro: Best-in-class for long context scenarios
Task TypeRecommended ModelWhy
Routine codingClaude Sonnet 4Fast, accurate, cost-effective
Complex refactoringClaude Opus 4Deep reasoning capabilities
Bug huntingOpenAI o3Specialized problem-solving
Large codebase analysisGemini 2.5 Pro1M+ token context
Quick completionsGPT-4.1Low latency, good accuracy
ModelContext WindowMax ModeStrengthsBest ForRelative Cost
Claude 4 Sonnet128k default200kFast, reliable, excellent code understandingDaily development, refactoring, explanations1x (baseline)
Claude 4 Opus-200kSuperior reasoning, complex problem solvingArchitecture design, complex debugging5x
Claude 3.7 Sonnet128k200kPrevious generation, still capableLegacy support, cost savings0.8x
Claude 3.5 Sonnet128k200kOlder but stableBasic tasks0.6x

Capabilities:

  • Excellent at understanding large codebases
  • Strong refactoring suggestions
  • Accurate bug detection
  • Natural conversation flow
  • Maintains context well across long sessions

Limitations:

  • Can be overly cautious with destructive operations
  • Sometimes verbose in explanations
  • May struggle with very recent frameworks

Optimal Use Cases:

// Example: Refactoring a complex function
// Sonnet 4 excels at understanding intent and suggesting improvements
async function processUserData(userData) {
// Sonnet 4 would suggest:
// - Add TypeScript types
// - Implement proper error handling
// - Extract validation logic
// - Add comprehensive tests
}

Capabilities:

  • Unmatched architectural understanding
  • Can design entire systems from requirements
  • Excellent at finding subtle bugs
  • Superior code review capabilities
  • Best at understanding complex business logic

When to Upgrade to Opus:

  1. Designing new system architecture
  2. Solving bugs that stumped Sonnet 4
  3. Complex multi-file refactoring
  4. Performance optimization requiring deep analysis
  5. Security audit and vulnerability detection
ModelContext WindowMax ModeStrengthsBest ForRelative Cost
o3128k200kDeep reasoning, complex problem-solvingDifficult bugs, algorithmic challenges4x
o4-mini128k200kLighter version of o3Quick reasoning tasks2x
GPT-4.1128k1MLatest GPT, balanced performanceGeneral coding, documentation1.2x
GPT-4o128k128kOptimized GPT-4Quick responses, simple tasks0.9x

Unique Strengths:

  • Excels at step-by-step reasoning
  • Best for algorithmic problems
  • Superior at finding edge cases
  • Excellent debugging capabilities

Thinking Model Behavior:

# o3 approaches problems methodically
# Given: "Fix the race condition in this code"
# o3 will:
# 1. Identify all shared resources
# 2. Trace execution paths
# 3. Find timing dependencies
# 4. Propose multiple solutions
# 5. Evaluate trade-offs

Cost Optimization:

  • Use for specific, complex problems only
  • Switch to Sonnet 4 for implementation
  • Reserve for bugs that resist other models
ModelContext WindowMax ModeStrengthsBest ForRelative Cost
Gemini 2.5 Pro128k1MMassive context, good reasoningLarge codebase analysis1.5x
Gemini 2.5 Flash1M1MFast, huge contextQuick searches, simple edits0.3x

Unique Advantages:

  • 1 million token context window
  • Can analyze entire medium-sized codebases
  • Excellent cross-file understanding
  • Good at maintaining consistency

Optimal Scenarios:

  1. Analyzing monorepos
  2. Understanding legacy codebases
  3. Cross-service dependency mapping
  4. Large-scale refactoring planning
ModelContext WindowMax ModeStrengthsBest ForRelative Cost
Grok 4 (xAI)128k256kFast, efficientQuick tasks, experimentation0.8x
Grok 3 Beta128k132kExperimental featuresTesting new capabilities0.7x
Grok 3 Mini128k132kLightweightSimple completions0.4x

Thinking Models

Examples: o3, Claude Opus 4, Gemini 2.5 Pro

Characteristics:

  • Take initiative in problem-solving
  • Generate comprehensive solutions
  • Consider multiple approaches
  • Best for open-ended tasks

Use when:

  • “Fix this architectural issue”
  • “Optimize this system”
  • “Find and fix all bugs”

Non-Thinking Models

Examples: Claude Sonnet 4, GPT-4.1

Characteristics:

  • Wait for specific instructions
  • Predictable behavior
  • Easier to control
  • Best for directed tasks

Use when:

  • “Change variable name to X”
  • “Add error handling here”
  • “Write tests for this function”
graph TD A[Task Size] --> B{< 50k tokens?} B -->|Yes| C[Any model works] B -->|No| D{< 200k tokens?} D -->|Yes| E[Use Max Mode] D -->|No| F{< 1M tokens?} F -->|Yes| G[Gemini 2.5 Pro/Flash] F -->|No| H[Split task or use specialized tools]
Use CaseBudget OptionBalanced OptionPremium Option
Daily CodingGemini FlashClaude Sonnet 4Claude Opus 4
Bug FixingClaude Sonnet 4o4-minio3
ArchitectureGemini 2.5 ProClaude Sonnet 4 + o3Claude Opus 4
RefactoringGPT-4.1Claude Sonnet 4Claude Opus 4
DocumentationGemini FlashGPT-4.1Claude Sonnet 4
ModelInput (per 1M tokens)Output (per 1M tokens)
Claude Sonnet 4$3$15
Claude Opus 4$15$75
o3$12$60
Gemini 2.5 Pro$2$10
GPT-4.1$2.5$10
Gemini Flash$0.30$1.20

Pro ($20/month)

  • ~225 Claude Sonnet 4 requests
  • ~650 GPT-4.1 requests
  • ~45 Claude Opus 4 requests

Ultra ($200/month)

  • ~4,500 Claude Sonnet 4 requests
  • ~13,000 GPT-4.1 requests
  • ~900 Claude Opus 4 requests
// Intelligent model selection based on task
function selectModel(task: CodingTask): AIModel {
// Complex architectural decisions
if (task.complexity > 8 || task.type === 'architecture') {
return 'claude-opus-4';
}
// Debugging with multiple failures
if (task.type === 'debug' && task.previousAttempts > 2) {
return 'o3';
}
// Large codebase analysis
if (task.contextSize > 200_000) {
return 'gemini-2.5-pro';
}
// Default to cost-effective option
return 'claude-sonnet-4';
}

Example: Complex Feature Implementation

  1. Planning Phase: Use Claude Opus 4 for architecture
  2. Implementation: Claude Sonnet 4 for coding
  3. Debugging: o3 for complex issues
  4. Documentation: GPT-4.1 for clear explanations
  5. Review: Claude Opus 4 for final security audit
TaskClaude Sonnet 4Claude Opus 4o3Gemini 2.5 Pro
Code Generation95%98%92%90%
Bug Detection88%95%97%85%
Refactoring92%97%90%88%
Architecture85%98%93%87%
Speed (relative)100%70%60%85%
  • Use clear, conversational prompts
  • Provide context about coding standards
  • Leverage their strong safety features
  • Excellent for collaborative development
  • More direct, task-focused prompts work well
  • Good at following specific formats
  • Strong at mathematical computations
  • Best for algorithmic challenges
  • Maximize their context window advantage
  • Use for cross-file operations
  • Good for polyglot codebases
  • Efficient for large-scale analysis

Upcoming Developments

Expected in 2025:

  • Claude 5 series with enhanced reasoning
  • GPT-5 with improved code understanding
  • Specialized models for specific languages
  • Local model options for privacy

Trends to Watch:

  • Increasing context windows (2M+ tokens)
  • Faster inference times
  • Better multi-modal understanding
  • Enhanced security features
  1. Assess Task Complexity

    • Simple: Any model
    • Medium: Claude Sonnet 4 or GPT-4.1
    • Complex: Claude Opus 4 or o3
  2. Consider Context Size

    • < 100k tokens: Standard models
    • 100k-200k: Use Max Mode
    • 200k: Gemini 2.5 Pro

  3. Evaluate Budget

    • Calculate tokens needed
    • Compare subscription vs API costs
    • Consider long-term usage
  4. Test and Iterate

    • Start with cost-effective models
    • Upgrade if needed
    • Track what works for your use cases
  1. Start with Sonnet 4 - It handles 80% of tasks excellently
  2. Upgrade strategically - Use premium models for specific challenges
  3. Monitor usage - Track which models provide best ROI
  4. Combine models - Use each model’s strengths
  5. Stay updated - Model capabilities evolve rapidly