Przejdź do głównej zawartości

Python Backend Patterns

Ta treść nie jest jeszcze dostępna w Twoim języku.

Accelerate Python backend development with Cursor IDE and Claude Code. These patterns cover web frameworks, data processing, machine learning integration, async programming, and deployment strategies tailored for AI-assisted Python development.

  1. Open Cursor in your workspace
  2. Launch Agent mode (Cmd/Ctrl + I)
  3. Prompt: “Create a Python project with:
    • FastAPI or Django framework
    • Poetry for dependency management
    • SQLAlchemy ORM
    • Pytest for testing
    • Pre-commit hooks
    • Docker configuration”
  4. Agent will set up the complete environment
# Cursor prompt for FastAPI setup:
"Create a FastAPI application with:
- Async/await support
- Pydantic models for validation
- JWT authentication
- Database integration with async SQLAlchemy
- OpenAPI documentation
- Background tasks with Celery"
# Generated structure:
app/
api/
v1/
endpoints/
dependencies/
core/
config.py
security.py
models/
schemas/
services/
db/
# Django REST Framework prompt:
"Set up Django REST API with:
- ViewSets and serializers
- Token authentication
- Pagination and filtering
- Custom permissions
- API versioning
- Swagger documentation"
# Database configuration prompt:
"Set up SQLAlchemy with:
- Declarative models
- Alembic migrations
- Connection pooling
- Session management
- Relationship mappings
- Query optimization"

Repository Pattern

# Prompt: "Implement repository pattern:
# - Abstract base repository
# - Concrete implementations
# - Unit of work pattern
# - Transaction management"

Database Sharding

# Prompt: "Add database sharding:
# - Horizontal partitioning
# - Shard routing
# - Cross-shard queries
# - Rebalancing strategy"
# Async implementation prompt:
"Create async Python service with:
- aiohttp for HTTP client
- asyncpg for PostgreSQL
- Redis with aioredis
- Concurrent task management
- Error handling for async
- Performance monitoring"
  1. Task Management: “Implement async task queue with priority”
  2. Connection Pooling: “Set up async connection pools”
  3. Rate Limiting: “Add async rate limiter”
  4. Testing: “Write async tests with pytest-asyncio”
# ETL pipeline prompt:
"Build ETL pipeline with:
- Data extraction from multiple sources
- Transformation with pandas
- Validation and cleaning
- Loading to data warehouse
- Error handling and retries
- Progress monitoring"
# Kafka processing:
"Implement Kafka consumer with:
- Message deserialization
- Processing logic
- Error handling
- Offset management
- Monitoring"
# ML serving prompt:
"Create ML model serving API with:
- Model loading and caching
- Preprocessing pipeline
- Batch prediction support
- A/B testing framework
- Model versioning
- Performance metrics"

AI-Assisted ML Ops

Cursor/Claude can help with:

  • Feature engineering pipelines
  • Model deployment strategies
  • Monitoring and alerting
  • Data drift detection
  • Model retraining automation
# Test suite prompt:
"Create comprehensive tests with:
- Unit tests with pytest
- Integration tests
- API contract tests
- Performance tests with locust
- Test fixtures and factories
- Coverage reporting"

Mocking Strategies

# Prompt: "Implement mocking for:
# - External API calls
# - Database queries
# - Time-dependent code
# - File system operations"

Property Testing

# Prompt: "Add property tests with:
# - Hypothesis strategies
# - Edge case generation
# - Stateful testing
# - Shrinking examples"
# Security implementation:
"Implement security layer with:
- OAuth2 with JWT tokens
- Role-based access control
- API key management
- Rate limiting per user
- Request signing
- Audit logging"
# Caching implementation:
"Add caching layer with:
- Redis for hot data
- Memcached for sessions
- Local LRU cache
- Cache warming strategies
- Invalidation patterns
- Distributed caching"
  1. Profiling: “Add code profiling with cProfile”
  2. APM Setup: “Configure New Relic or DataDog”
  3. Metrics: “Implement custom metrics with Prometheus”
  4. Optimization: “Optimize hot paths identified by profiling”
# Kubernetes deployment prompt:
"Create Kubernetes manifests for:
- Deployment with replicas
- Service and ingress
- ConfigMaps and secrets
- Horizontal pod autoscaling
- Health checks
- Resource limits"
# Python CI/CD prompt:
"Create GitHub Actions for:
- Linting with black/flake8
- Type checking with mypy
- Test execution
- Docker image build
- Deployment to K8s"
# Microservices prompt:
"Implement microservices communication with:
- gRPC for internal services
- REST for external APIs
- Service discovery
- Circuit breakers
- Distributed tracing
- Event sourcing"

Queue Patterns

Implement with AI assistance:

  • Celery for task queues
  • RabbitMQ for messaging
  • Event-driven architecture
  • Saga pattern for transactions
  • Dead letter queues
# Structure prompts like:
"Create [feature] in Python with:
- Type hints throughout
- Docstrings (Google style)
- Error handling
- Logging setup
- Unit tests
- Following PEP 8"

Code Review

Use AI to check:

  • PEP 8 compliance
  • Type hint coverage
  • Security vulnerabilities
  • Performance issues

Refactoring

AI can help with:

  • Extract method/class
  • Remove duplication
  • Optimize algorithms
  • Modernize syntax
# DDD implementation:
"Implement DDD patterns with:
- Aggregates and entities
- Value objects
- Domain services
- Repositories
- Domain events
- Bounded contexts"
# Event system prompt:
"Create event-driven system with:
- Event bus implementation
- Event storage
- Event replay
- Saga orchestration
- Eventually consistent updates"