Przejdź do głównej zawartości

AI-Powered Testing and Quality Assurance

Ta treść nie jest jeszcze dostępna w Twoim języku.

Testing is where AI assistance truly shines. Instead of manually writing repetitive test cases or struggling to achieve coverage goals, Cursor’s AI can generate comprehensive test suites, debug failures, and even perform end-to-end testing through browser automation.

The traditional TDD cycle (Red → Green → Refactor) becomes supercharged with AI assistance. Here’s the enhanced workflow:

1. Write Tests First

AI generates comprehensive test cases from requirements

2. Run Tests (Red)

Tests fail initially - this validates they’re testing real behavior

3. Implement Code (Green)

AI writes code to make tests pass, iterating automatically

4. Refactor (Blue)

AI optimizes code while ensuring tests still pass

Enable YOLO mode to unlock automated test execution:

Settings → General → YOLO Mode → Enable
Recommended prompt:
any kind of tests are always allowed like vitest, npm test,
nr test, etc. also basic build commands like build, tsc, etc.
creating files and making directories (like touch, mkdir, etc)
is always ok too

With YOLO mode, Agent can:

  • Run tests automatically
  • Fix failing tests by updating code
  • Iterate until all tests pass
  • Fix TypeScript/linting errors

Let’s implement a complex function using AI-powered TDD:

Agent: Create a function that converts markdown to HTML.
Write tests first, then the code, then run the tests
and update the code until tests pass.

Watch as Agent:

  1. Creates comprehensive test file

    describe('markdownToHtml', () => {
    it('should convert headers', () => {
    expect(markdownToHtml('# Title')).toBe('<h1>Title</h1>');
    expect(markdownToHtml('## Subtitle')).toBe('<h2>Subtitle</h2>');
    });
    it('should convert bold text', () => {
    expect(markdownToHtml('**bold**')).toBe('<strong>bold</strong>');
    });
    it('should handle code blocks', () => {
    expect(markdownToHtml('`code`')).toBe('<code>code</code>');
    });
    // AI generates many more edge cases...
    });
  2. Implements the function

    function markdownToHtml(markdown) {
    // Initial implementation
    }
  3. Runs tests and sees failures

    ✗ 6 tests failed
  4. Iteratively fixes the code

    Updating implementation to handle headers...
    Running tests again...
    ✗ 3 tests failed
    Adding bold text support...
    Running tests again...
    ✓ All tests passed!

Pattern 1: Component Testing (React/Vue/Angular)

Section titled “Pattern 1: Component Testing (React/Vue/Angular)”
Agent: Create unit tests for this UserProfile component.
Test all props, user interactions, and edge cases.
Use React Testing Library.

Agent generates:

describe('UserProfile', () => {
it('renders user name and avatar', () => {
const user = { name: 'John', avatar: 'url' };
render(<UserProfile user={user} />);
expect(screen.getByText('John')).toBeInTheDocument();
expect(screen.getByRole('img')).toHaveAttribute('src', 'url');
});
it('handles missing avatar gracefully', () => {
// Edge case testing
});
it('calls onEdit when edit button clicked', () => {
// Interaction testing
});
});
Agent: Create tests for this async data fetching function.
Include loading states, success, errors, and retries.

AI handles complex async scenarios:

describe('fetchUserData', () => {
it('returns user data on success', async () => {
const mockUser = { id: 1, name: 'Test' };
fetch.mockResolvedValueOnce({
ok: true,
json: async () => mockUser
});
const result = await fetchUserData(1);
expect(result).toEqual(mockUser);
});
it('retries on network failure', async () => {
fetch.mockRejectedValueOnce(new Error('Network error'));
fetch.mockResolvedValueOnce({
ok: true,
json: async () => ({ id: 1 })
});
const result = await fetchUserData(1);
expect(fetch).toHaveBeenCalledTimes(2);
expect(result).toBeDefined();
});
});

Leverage Puppeteer/Playwright MCP for comprehensive E2E testing:

Agent: Set up E2E tests for our login flow using Puppeteer.
Test successful login, invalid credentials, and forgot password.

Agent creates comprehensive E2E tests:

describe('Login Flow E2E', () => {
it('successful login redirects to dashboard', async () => {
// Agent uses Puppeteer MCP
await page.goto('http://localhost:3000/login');
await page.type('#email', 'user@example.com');
await page.type('#password', 'correct-password');
await page.click('button[type="submit"]');
await page.waitForNavigation();
expect(page.url()).toContain('/dashboard');
// Take screenshot for visual verification
await page.screenshot({ path: 'login-success.png' });
});
it('shows error for invalid credentials', async () => {
await page.goto('http://localhost:3000/login');
await page.type('#email', 'user@example.com');
await page.type('#password', 'wrong-password');
await page.click('button[type="submit"]');
const error = await page.waitForSelector('.error-message');
const text = await error.evaluate(el => el.textContent);
expect(text).toContain('Invalid credentials');
});
});
Agent: Add visual regression tests for our key pages.
Compare screenshots and flag any visual changes.

When tests fail, AI becomes your debugging partner:

1. Analyze Failure

Agent: This test is failing. Add console.logs
to understand what's happening.

2. Run with Logs

Agent runs test with added logging,
captures output for analysis

3. Identify Issue

Based on logs: "The issue is the date
format doesn't match expected pattern"

4. Fix and Verify

Agent fixes the code and reruns tests
to confirm resolution
User: The user authentication test is failing intermittently
Agent: I'll debug this intermittent failure. Let me add logging
and timing information to understand the issue.
[Adds strategic console.logs and performance marks]
[Runs test multiple times]
Found it! The test fails when the database connection pool
is exhausted. The previous test isn't cleaning up connections.
Let me fix this by adding proper cleanup...
[Adds afterEach cleanup hook]
[Runs test 10 times - all pass]
The intermittent failure is now resolved.
Agent: Analyze our test coverage and write tests
to reach 90% coverage for the auth module.

Agent will:

  1. Run coverage report
  2. Identify untested code paths
  3. Generate tests for missing coverage
  4. Focus on meaningful tests, not just line coverage
File | % Stmts | % Branch | % Funcs | % Lines |
-------------------|---------|----------|---------|---------|
auth/login.js | 75.00 | 66.67 | 100.00 | 75.00 |
auth/register.js | 90.00 | 85.00 | 100.00 | 88.89 |
auth/reset.js | 45.00 | 33.33 | 66.67 | 45.00 |
Agent: I'll focus on auth/reset.js which has low coverage.
Creating tests for password reset edge cases...
Agent: Mock all external API calls in our payment tests.
Include both success and failure scenarios.
// AI generates comprehensive mocks
jest.mock('@/services/stripe', () => ({
createPaymentIntent: jest.fn(),
confirmPayment: jest.fn(),
handleWebhook: jest.fn()
}));
describe('Payment Processing', () => {
beforeEach(() => {
// Reset mocks between tests
jest.clearAllMocks();
});
it('handles Stripe API errors gracefully', async () => {
const stripeError = new Error('Card declined');
stripeError.code = 'card_declined';
createPaymentIntent.mockRejectedValueOnce(stripeError);
// Test error handling...
});
});
Agent: Create data-driven tests for our validation logic.
Test with various input combinations.
describe('Input Validation', () => {
const testCases = [
{ input: 'valid@email.com', expected: true, description: 'valid email' },
{ input: 'invalid.email', expected: false, description: 'missing @' },
{ input: '@example.com', expected: false, description: 'missing local part' },
{ input: 'test@', expected: false, description: 'missing domain' },
// AI generates many more cases...
];
testCases.forEach(({ input, expected, description }) => {
it(`validates ${description}`, () => {
expect(isValidEmail(input)).toBe(expected);
});
});
});
Agent: Create performance tests for our API endpoints.
Measure response times and identify bottlenecks.
describe('API Performance', () => {
it('responds within 200ms for user list', async () => {
const start = performance.now();
const response = await request(app).get('/api/users');
const duration = performance.now() - start;
expect(response.status).toBe(200);
expect(duration).toBeLessThan(200);
});
it('handles 100 concurrent requests', async () => {
const requests = Array(100).fill(null).map(() =>
request(app).get('/api/users')
);
const responses = await Promise.all(requests);
const successCount = responses.filter(r => r.status === 200).length;
expect(successCount).toBeGreaterThan(95); // 95% success rate
});
});
Agent: Set up quality gates that prevent merging if:
- Test coverage drops below 80%
- Any tests fail
- Performance benchmarks aren't met

Test Behavior, Not Implementation

Focus on what the code does, not how it does it

Maintain Test Independence

Each test should run in isolation without dependencies

Use Descriptive Names

Test names should clearly describe what they verify

Keep Tests Simple

One assertion per test when possible

Issue: Tests pass sometimes, fail others
Solution:
Agent: Debug this flaky test by running it 20 times
and identifying what varies between runs.

Your testing game is now transformed with AI assistance:

  1. Aim for comprehensive coverage - Let AI find edge cases
  2. Automate everything - From unit tests to E2E scenarios
  3. Use tests as documentation - Well-written tests explain behavior
  4. Integrate with CI/CD - Automated quality gates
  5. Continuously improve - AI helps maintain and update tests