Przejdź do głównej zawartości

CI/CD Pipeline Setup with AI Assistance

Ta treść nie jest jeszcze dostępna w Twoim języku.

Modern software development demands automated pipelines that build, test, and deploy code reliably. This lesson shows how Cursor IDE’s AI capabilities can help you design, implement, and maintain sophisticated CI/CD workflows that would typically require DevOps expertise.

Cursor’s AI understands popular CI/CD platforms, their configuration languages, and best practices. It can generate pipeline configurations, debug failures, and suggest optimizations based on your project’s needs.

Pipeline Generation

Create complete CI/CD configurations from descriptions

Test Automation

Generate comprehensive test suites and strategies

Deployment Scripts

Build deployment automation for any platform

Monitoring Setup

Configure pipeline monitoring and alerting

# Agent prompt:
"Create a GitHub Actions workflow for a Node.js app with:
- Build and test on multiple Node versions
- Code coverage reporting
- Docker image building
- Deployment to AWS ECS
- Slack notifications"

Let’s build a production-ready CI/CD pipeline for a full-stack application:

  1. Create the workflow structure

    @.github/workflows
    Create a comprehensive GitHub Actions workflow:
    - Trigger on push to main and PRs
    - Run linting, testing, and security checks
    - Build Docker images with caching
    - Deploy to staging automatically
    - Deploy to production with approval
  2. Cursor generates the complete workflow

    name: CI/CD Pipeline
    on:
    push:
    branches: [main, develop]
    pull_request:
    branches: [main]
    env:
    REGISTRY: ghcr.io
    IMAGE_NAME: ${{ github.repository }}
    jobs:
    lint-and-test:
    runs-on: ubuntu-latest
    strategy:
    matrix:
    node-version: [18.x, 20.x]
    steps:
    - uses: actions/checkout@v4
    - name: Setup Node.js
    uses: actions/setup-node@v4
    with:
    node-version: ${{ matrix.node-version }}
    cache: 'npm'
    - name: Install dependencies
    run: npm ci
    - name: Run linting
    run: npm run lint
    - name: Run tests
    run: npm test -- --coverage
    - name: Upload coverage
    uses: codecov/codecov-action@v3
    with:
    token: ${{ secrets.CODECOV_TOKEN }}
  3. Add security scanning

    security:
    runs-on: ubuntu-latest
    steps:
    - uses: actions/checkout@v4
    - name: Run security audit
    run: npm audit --production
    - name: Run SAST scan
    uses: github/super-linter@v5
    env:
    DEFAULT_BRANCH: main
    GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
build-and-push:
needs: [lint-and-test, security]
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Log in to Container Registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
tags: |
type=ref,event=branch
type=ref,event=pr
type=semver,pattern={{version}}
type=sha,prefix={{branch}}-
- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: .
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
deploy-staging:
needs: build-and-push
runs-on: ubuntu-latest
environment: staging
steps:
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: us-east-1
- name: Deploy to ECS
run: |
aws ecs update-service \
--cluster staging-cluster \
--service my-app-service \
--force-new-deployment

Ask Cursor to implement complex matrix strategies:

Create a matrix build that tests:
- Multiple OS (Ubuntu, Windows, macOS)
- Multiple Node versions (16, 18, 20)
- Multiple database versions (PostgreSQL 12, 13, 14)
- Skip incompatible combinations
test-suite:
runs-on: ubuntu-latest
strategy:
matrix:
test-group: [unit, integration, e2e]
steps:
- name: Run ${{ matrix.test-group }} tests
run: npm run test:${{ matrix.test-group }}
deploy-production:
if: github.ref == 'refs/heads/main' && github.event_name == 'push'
needs: [deploy-staging]
environment:
name: production
url: https://app.example.com
steps:
- name: Wait for approval
uses: trstringer/manual-approval@v1
with:
approvers: tech-lead,devops-team

Use Cursor to generate a complete testing strategy:

  1. Unit Tests

    Generate unit tests with:
    - 80% code coverage minimum
    - Mock external dependencies
    - Test edge cases
    - Performance benchmarks
  2. Integration Tests

    Create integration tests:
    - Test API endpoints
    - Database operations
    - External service integrations
    - Use test containers
  3. End-to-End Tests

    Implement E2E tests:
    - Use Playwright/Cypress
    - Test critical user flows
    - Cross-browser testing
    - Visual regression tests
Implement blue-green deployment in GitHub Actions:
1. Deploy to green environment
2. Run smoke tests
3. Switch load balancer to green
4. Keep blue for rollback
5. Clean up old blue after success
canary-deploy:
steps:
- name: Deploy canary
run: |
kubectl set image deployment/my-app-canary \
my-app=${{ env.NEW_IMAGE }}
- name: Monitor metrics
run: |
./scripts/check-canary-metrics.sh
- name: Gradual rollout
run: |
for percent in 10 25 50 100; do
kubectl patch deployment my-app \
-p '{"spec":{"strategy":{"rollingUpdate":{"maxSurge":"'$percent'%"}}}}'
sleep 300
./scripts/check-health.sh || exit 1
done
Integrate feature flags with CI/CD:
- Use LaunchDarkly/Unleash
- Deploy code with flags off
- Gradually enable features
- Monitor metrics per feature
- Automatic rollback on errors
  1. Implement caching

    - name: Cache dependencies
    uses: actions/cache@v3
    with:
    path: ~/.npm
    key: ${{ runner.os }}-node-${{ hashFiles('**/package-lock.json') }}
  2. Use Docker layer caching

    - name: Build with cache
    uses: docker/build-push-action@v5
    with:
    cache-from: type=registry,ref=${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:buildcache
    cache-to: type=registry,ref=${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:buildcache,mode=max
  3. Parallelize independent jobs

    jobs:
    test:
    # Runs immediately
    security-scan:
    # Runs in parallel with test
    build:
    needs: [test, security-scan]
    # Waits for both

Ask Cursor to optimize for CI/CD costs:

Optimize GitHub Actions for cost:
- Use larger runners only when needed
- Implement job timeouts
- Skip unchanged components
- Use conditional workflows
- Archive old artifacts
- name: Send metrics to DataDog
if: always()
run: |
curl -X POST "https://api.datadoghq.com/api/v1/series" \
-H "Content-Type: application/json" \
-H "DD-API-KEY: ${{ secrets.DD_API_KEY }}" \
-d @- <<EOF
{
"series": [{
"metric": "ci.pipeline.duration",
"points": [[${{ steps.timer.outputs.time }}, ${{ steps.timer.outputs.duration }}]],
"tags": ["pipeline:${{ github.workflow }}", "status:${{ job.status }}"]
}]
}
EOF
- name: Notify Slack
if: failure()
uses: slackapi/slack-github-action@v1
with:
payload: |
{
"text": "Deployment failed!",
"blocks": [{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "❌ *${{ github.workflow }}* failed\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
}
}]
}
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK }}
Implement secure secrets handling:
1. Use GitHub Secrets for sensitive data
2. Rotate secrets regularly
3. Use OIDC for cloud authentication
4. Implement least-privilege access
5. Audit secret usage
- name: Generate SBOM
uses: anchore/sbom-action@v0
with:
output-file: sbom.spdx.json
- name: Sign container image
uses: sigstore/cosign-installer@v3
run: |
cosign sign --yes \
${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}@${{ steps.build.outputs.digest }}

Use Cursor to diagnose pipeline failures:

My GitHub Actions workflow is failing with "Error: Process completed with exit code 1"
Help me debug by:
1. Adding detailed logging
2. Checking environment variables
3. Validating file permissions
4. Testing locally with act
Terminal window
# Test GitHub Actions locally
act -j build --secret-file .env.secrets
# Debug specific job
act -j test --verbose
# Use specific Docker image
act -j deploy --platform ubuntu-latest=nektos/act-environments-ubuntu:18.04
Create CI/CD for a monorepo with:
- Detect changed packages
- Run tests only for affected code
- Build and deploy changed services
- Shared dependency caching
- Parallel execution per package
ios-build:
runs-on: macos-latest
steps:
- uses: actions/checkout@v4
- name: Setup Xcode
uses: maxim-lobanov/setup-xcode@v1
with:
xcode-version: latest-stable
- name: Build and test
run: |
xcodebuild test \
-scheme MyApp \
-destination 'platform=iOS Simulator,name=iPhone 14'
- name: Upload to TestFlight
run: |
xcrun altool --upload-app \
-f MyApp.ipa \
-u ${{ secrets.APPLE_ID }} \
-p ${{ secrets.APP_PASSWORD }}

Keep all pipeline configurations in your repository for traceability and rollback capabilities.

Use Cursor to create reusable workflow templates and composite actions.

Order jobs to catch failures early and save compute resources.

Ask Cursor to generate documentation for complex pipeline logic.

Track pipeline metrics, costs, and performance trends.

Key metrics to track:

  • Build Success Rate: Percentage of successful builds
  • Mean Time to Deploy: From commit to production
  • Test Execution Time: How long tests take
  • Pipeline Cost: Monthly CI/CD expenses
  • Deployment Frequency: How often you deploy

After mastering CI/CD with Cursor:

  1. Explore GitOps workflows with ArgoCD or Flux
  2. Implement progressive delivery with feature flags
  3. Build multi-cloud deployment pipelines
  4. Create disaster recovery automation

Remember: Cursor doesn’t just help you write pipeline configurations—it helps you understand CI/CD patterns and best practices that create reliable, efficient software delivery systems.