Indexing Overhead
Initial and incremental indexing can consume significant CPU/memory
Ta treść nie jest jeszcze dostępna w Twoim języku.
As your codebase grows and your team scales, maintaining Cursor’s performance becomes critical. This guide covers advanced optimization techniques that keep Cursor responsive even under heavy load.
Indexing Overhead
Initial and incremental indexing can consume significant CPU/memory
Context Window Size
Large context windows slow down AI responses exponentially
Extension Conflicts
Extensions can interfere with Cursor’s AI features
Network Latency
API calls to AI models can be bottlenecked by network speed
Component | Minimum | Recommended | Optimal |
---|---|---|---|
RAM | 8GB | 16GB | 32GB+ |
CPU | 4 cores | 8 cores | 12+ cores |
Storage | SSD 256GB | NVMe 512GB | NVMe 1TB+ |
Network | 10 Mbps | 50 Mbps | 100+ Mbps |
# Increase file descriptor limitssudo launchctl limit maxfiles 65536 200000
# Disable Spotlight indexing for code directoriessudo mdutil -i off /path/to/code
# Increase shared memorysudo sysctl -w kern.sysv.shmmax=2147483648sudo sysctl -w kern.sysv.shmall=524288
# Add to /etc/sysctl.conf for persistenceecho "kern.sysv.shmmax=2147483648" | sudo tee -a /etc/sysctl.confecho "kern.sysv.shmall=524288" | sudo tee -a /etc/sysctl.conf
# Increase file descriptor limitsecho "* soft nofile 65536" | sudo tee -a /etc/security/limits.confecho "* hard nofile 65536" | sudo tee -a /etc/security/limits.conf
# Increase inotify watchersecho "fs.inotify.max_user_watches=524288" | sudo tee -a /etc/sysctl.confsudo sysctl -p
# Optimize swappiness for developmentecho "vm.swappiness=10" | sudo tee -a /etc/sysctl.conf
# Enable transparent huge pagesecho "always" | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
# Run as Administrator
# Increase virtual memorywmic computersystem set AutomaticManagedPagefile=Falsewmic pagefileset set InitialSize=16384,MaximumSize=32768
# Disable Windows Search for code directoriesSet-Service WSearch -StartupType Disabled
# Optimize for performancepowercfg -setactive 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c
# Disable unnecessary servicesSet-Service "SysMain" -StartupType DisabledSet-Service "Windows Search" -StartupType Disabled
// Cursor performance configuration{ "cursor.performance.memoryLimit": "8GB", "cursor.performance.maxWorkers": 6, "cursor.performance.cacheSize": "2GB", "cursor.performance.enableLazyLoading": true, "cursor.performance.garbageCollection": "aggressive", "cursor.performance.indexingThreads": 4, "cursor.performance.searchCacheEnabled": true, "cursor.performance.searchCacheSize": "1GB", "cursor.performance.incrementalIndexing": true, "cursor.performance.indexingBatchSize": 100}
Create an optimized .cursorignore
file:
# .cursorignore - Maximize indexing performance
# Dependencies and packagesnode_modules/vendor/packages/*/node_modules/**/bower_components/.pnpm-store/.yarn/
# Build outputsdist/build/out/target/*.min.js*.min.css*.map
# Large generated filescoverage/*.generated.**.pb.go*.pb.jsschema.graphqlpackage-lock.jsonyarn.lockpnpm-lock.yaml
# Media and binaries*.jpg*.jpeg*.png*.gif*.mp4*.pdf*.zip*.tar.gz
# Logs and databases*.log*.sqlite*.db
# IDE and system files.idea/.vscode/.DS_StoreThumbs.db
# Test fixtures and datafixtures/__fixtures__/testdata/*.snapshot__snapshots__/
// Context optimization patterns
// 1. Layered Context Approachclass ContextOptimizer { // Start with minimal context async getMinimalContext(task: string) { return { currentFile: this.getCurrentFile(), directImports: await this.getDirectImports(), recentChanges: this.getRecentChanges(5) }; }
// Expand as needed async expandContext(feedback: string) { const additionalContext = await this.analyzeNeeds(feedback); return this.addContext(additionalContext); }
// Never exceed limits async pruneContext(context: Context) { const tokenCount = await this.countTokens(context); if (tokenCount > this.maxTokens) { return this.intelligentPrune(context); } return context; }}
// Monitor and optimize context usageclass ContextMonitor { private contextHistory: ContextUsage[] = [];
async analyzeUsage() { const stats = { averageTokens: this.calculateAverage(), peakUsage: this.findPeak(), wastedTokens: this.identifyWaste(), optimalSize: this.calculateOptimal() };
return { stats, recommendations: this.generateRecommendations(stats) }; }
private identifyWaste() { // Find included files that were never referenced return this.contextHistory .flatMap(usage => usage.includedFiles) .filter(file => !this.wasReferenced(file)); }}
// Intelligent model selectionclass ModelSelector { selectModel(task: TaskType): Model { switch (task.complexity) { case 'simple': // Fast, lightweight model return { model: 'claude-4-sonnet', temperature: 0.3, maxTokens: 2000 };
case 'medium': // Balanced model return { model: 'claude-4-sonnet', temperature: 0.5, maxTokens: 4000 };
case 'complex': // Powerful but slower return { model: 'claude-4-opus', temperature: 0.7, maxTokens: 8000 };
case 'analysis': // Long context model return { model: 'gemini-2.5-pro', temperature: 0.4, maxTokens: 100000 }; } }}
Task Type | Model Choice | Response Time | Quality | Token Cost |
---|---|---|---|---|
Quick fixes | Sonnet 4 | under 2s | Good | Low |
Feature development | Sonnet 4 | 2-5s | Very Good | Medium |
Complex refactoring | Opus 4 | 5-10s | Excellent | High |
Codebase analysis | Gemini 2.5 | 3-8s | Very Good | Medium |
Deep debugging | o3 | 10-20s | Excellent | Very High |
# Debug extension performance issuescursor --inspect-brk-extensions 9229
# Run in safe mode (no extensions)cursor --disable-extensions
# To find problematic extensions:# 1. Disable all extensions via UI# 2. Enable them one by one to isolate issues
{ // Disable extensions that conflict with Cursor AI "extensions.disabled": [ "github.copilot", "tabnine.tabnine-vscode", "visualstudioexptteam.vscodeintellicode" ],
// Lazy load heavy extensions "extensions.experimental.affinity": { "vscodevim.vim": 1, "dbaeumer.vscode-eslint": 2, "esbenp.prettier-vscode": 2 }}
// Implement intelligent cachingclass ResponseCache { private cache = new Map<string, CachedResponse>(); private readonly TTL = 5 * 60 * 1000; // 5 minutes
async getCachedOrFetch( prompt: string, fetcher: () => Promise<Response> ): Promise<Response> { const key = this.hashPrompt(prompt); const cached = this.cache.get(key);
if (cached && !this.isExpired(cached)) { return cached.response; }
const response = await fetcher(); this.cache.set(key, { response, timestamp: Date.now() });
return response; }}
{ "cursor.network.connectionPool": { "maxSockets": 10, "maxFreeSockets": 5, "timeout": 60000, "keepAlive": true, "keepAliveMsecs": 30000 },
"cursor.network.http2": { "enabled": true, "maxConcurrentStreams": 100 }}
// Real-time performance monitoringclass PerformanceMonitor { private metrics = { indexingTime: new MetricCollector('indexing'), searchLatency: new MetricCollector('search'), aiResponseTime: new MetricCollector('ai_response'), memoryUsage: new MetricCollector('memory'), cpuUsage: new MetricCollector('cpu') };
startMonitoring() { // Collect metrics every 30 seconds setInterval(() => { this.collectMetrics(); this.analyzeThresholds(); this.generateAlerts(); }, 30000); }
private analyzeThresholds() { const alerts = [];
if (this.metrics.memoryUsage.current > 0.9) { alerts.push('High memory usage detected'); }
if (this.metrics.aiResponseTime.p95 > 10000) { alerts.push('Slow AI responses detected'); }
return alerts; }}
// Enable performance logging{ "cursor.telemetry.performanceLogging": true, "cursor.telemetry.logLevel": "verbose", "cursor.telemetry.logPath": "~/.cursor/performance.log", "cursor.telemetry.metrics": [ "indexing", "search", "completion", "memory", "network" ]}
A team optimized their massive monorepo:
Partitioned the Codebase
Optimized Indexing
Context Strategy
Model Selection
Performance-critical environment optimizations:
// Ultra-low latency configuration{ "cursor.performance": { "mode": "performance", "disableAnimations": true, "disableTelemetry": true, "minimalUI": true, "aggressiveCaching": true, "preloadModels": ["claude-4-sonnet"], "dedicatedWorkers": 8 }}
// Results:// - Tab completion: under 50ms// - Inline edits: under 100ms// - Agent responses: under 2s average
High CPU Usage
Slow Responses
Memory Leaks
Indexing Hangs
#!/bin/bash# Full performance reset
# 1. Close Cursorkillall Cursor
# 2. Clear cachesrm -rf ~/.cursor/Cacherm -rf ~/.cursor/CachedDatarm -rf ~/.cursor/GPUCache
# 3. Reset indexesrm -rf ~/.cursor/IndexedDB
# 4. Clean workspace storagerm -rf ~/.cursor/workspaceStorage
# 5. Restart with fresh profilecursor --user-data-dir ~/.cursor-fresh
Profile Before Optimizing
Incremental Improvements
Team-Wide Standards
Regular Maintenance
Remember: The fastest Cursor is one configured for your specific workflow. There’s no one-size-fits-all solution—experiment and measure to find your optimal setup.