AI-Driven Document Modeling
The Pattern: Use AI to design flexible document schemas that balance denormalization with data consistency.
// Prompt to AI Assistant"Design a MongoDB schema for an e-commerce platform with:- User profiles with addresses and payment methods- Product catalog with variants and inventory- Orders with real-time status tracking- Shopping cart with session managementConsider read/write patterns and denormalization trade-offs"
// AI generates comprehensive schema:// User collection with embedded documentsconst userSchema = { _id: ObjectId(), email: "user@example.com", profile: { firstName: "John", lastName: "Doe", phone: "+1234567890" }, addresses: [ { _id: ObjectId(), type: "shipping", street: "123 Main St", city: "New York", country: "USA", isDefault: true } ], paymentMethods: [ { _id: ObjectId(), type: "card", last4: "1234", expiryMonth: 12, expiryYear: 2025, isDefault: true } ], cart: { items: [ { productId: ObjectId(), variantId: ObjectId(), quantity: 2, price: 29.99, addedAt: ISODate() } ], updatedAt: ISODate() }};
// Product collection with rich attributesconst productSchema = { _id: ObjectId(), sku: "PROD-001", name: "Wireless Headphones", slug: "wireless-headphones-black", description: "Premium noise-cancelling headphones", category: ["Electronics", "Audio", "Headphones"],
// Denormalized for performance brand: { _id: ObjectId(), name: "AudioTech", logo: "https://..." },
// Variants as subdocuments variants: [ { _id: ObjectId(), color: "Black", price: 299.99, compareAtPrice: 349.99, inventory: { available: 150, reserved: 10, warehouse: { "NYC": 50, "LA": 100 } }, images: ["url1", "url2"] } ],
// Aggregated review data reviews: { count: 245, average: 4.5, distribution: { 5: 150, 4: 60, 3: 20, 2: 10, 1: 5 } }};
Benefits:
- Optimized for read-heavy operations
- Minimizes joins through strategic denormalization
- Supports atomic updates on embedded documents
- Scales horizontally with sharding